Return to search

Multicomponent Ligand Interactions with Colloidal Gold and Silver Nanoparticles in Water

Multicomponent ligand interactions are involved in essentially all nanoparticle (NP) applications. However, the ligand conformation and ligand binding mechanisms on NPs are highly controversial. The research reported here is focused on deepening the fundamental understanding of multicomponent ligand interactions with gold and silver nanoparticles (AuNPs and AgNPs) in water. We demonstrated that AuNPs passivated by saturated layer of poly(ethylene glycol) (PEG-SH) have large fractions of AuNP surface area available for ligand adsorption and exchange. The fraction of AuNP surface area passivated by PEG-SH with molecular weights of 2000, 5000, and 30000 g/mol was calculated to be ~ 25%, ~20%, and ~9% using 2-mercaptobenzimidazole and adenine as model ligands. The effect of both reduced and oxidized protein cysteine residues on protein interactions with AgNPs was investigated. The model proteins included wild-type and mutated GB3 variants with 0, 1, or 2 reduced cysteine residues. Bovine serum albumin containing 34 oxidized (disulfide-linked) and 1 reduced cysteine residues was also included. Protein cysteine content that were found to have no detectable effect on kinetics of protein/AgNP binding. However, only proteins that contain reduced cysteine induced significant AgNP dissolution. We further demonstrated that organothiols can induce both AgNP disintegration and formation under ambient conditions by simply mixing organothiols with AgNPs or AgNO3, respectively. Surface plasmon- and fluorescence-active AgNPs formed by changing the concentration ratio between Ag+ and organothiol. Organothiols also induced AuNP formation by mixing HAuCl4 with organothiols, but no AuNP disintegration occured. Finally, we proposed that multicomponent ligand binding to AuNPs can be highly dependent on the sequence of ligand mixing with AuNPs. Quantitative studies revealed that competitive adenine and glutathione adsorption onto both as-synthesized and PEG-SH functionalized AuNPs is predominantly a kinetically controlled process. Besides providing new insights on multicomponent ligand interactions with colloidal AuNPs and AgNPs, this study opens a new avenue for fabrication of novel nanomaterials in biological/biomedical applications.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4221
Date11 August 2017
CreatorsSiriwardana, Wumudu Dilhani
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0026 seconds