Return to search

Predictive Capabilities of Advanced Turbulence Models in the Wake Region of a Wall Mounted Cube

This thesis seeks to investigate the predictive capabilities of Advanced turbulence models in the wake region of a wall-mounted cube. Dynamic Hybrid RANS/LES (DHRL), Hybrid RANS/LES (HRL) models, Nonlinear Explicit Algebraic Reynolds Stress Model (NEARSM), One- and Two-equation models, and numerical flux schemes will be compared against Direct Numerical Simulation (DNS) results to determine which model, or combination of models, produce the closest replication. The simulations were ran in Loci-Chem using both built-in features and modular code additions. The simulation results show the Shear Stress Transport (SST) model ran with NEARSM and Optimized Gradient REconstruction (OGRE) scheme gives better results than all other RANS and HRL models investigated herein. This result is matched only by SST with DHRL and OGRE. The best results were achieved using SST with NEARSM, DHRL, and OGRE. Thus, the NEARSM model shows potential to improve simulation results compared to simpler linear eddy-viscosity models.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4610
Date09 December 2016
CreatorsTaylor, Benjamin Hugh
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0018 seconds