Return to search

Hybrid Reynolds-Averaged / Large-Eddy Simulations of Ramped-Cavity and Compression Ramp Flow-fields

A procedure for simulating wall-bounded,separated flows utilizing hybrid large-eddy / Reynolds- Averaged strategies is presented in this work. Following the zonal concept, the proposed hybrid method uses a distance-dependent blending function to shift the turbulence closure from Menter's two-equation model near wall surfaces to a one-equation subgrid model away from walls. The code is parallelized using domain-decomposition / MPI message-passing methods and is optimized for operation on the 720 processor IBM SP-2 at the North Carolina Supercomputing Center. The capabilities of the hybrid method are examined on two benchmark flows: a ramped-cavity flow that is representative of the internal flow field of a high speed propulsion device, and a compression ramp flow that features the classical problem of a shock wave / boundary layer interaction. Results indicate that the hybrid method provides generally good predictions for the ramped-cavity configuration, but less satisfactory predictions for the compression ramp configuration. Nevertheless, the strength of the hybrid method in capturing the recovery of the boundary layer downstream of reattachment is found in both cases, and it is a major improvement over the simulations produced by RANS alone. The weaknesses in simulating the compression ramp flow are also discussed and possible remedies are provided for further investigation in the future.

Identiferoai:union.ndltd.org:NCSU/oai:NCSU:etd-07172002-154448
Date24 July 2002
CreatorsFan, Thomas Chen-Chuan
ContributorsDr. Jack R. Edwards
PublisherNCSU
Source SetsNorth Carolina State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://www.lib.ncsu.edu/theses/available/etd-07172002-154448/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to NC State University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0022 seconds