Return to search

Three Dimensional Simulation of Time-Dependent Scramjet Isolator /Combustor Flowfields Implemented on Parallel Architectures

<p>McDaniel, Keith S. Three Dimensional Simulation of Time-DependentScramjet Isolator / Combustor Flowfields Implemented onParallel Architectures, ( Under the directions of Dr. J. R. Edwards). The development of a parallel Navier-Stokes solver for computing time-dependent,three-dimensional reacting flowfields within scramjet (supersonic combusting ramjet)engines is presented in this work. The algorithm combines low-diffusion upwinding methods, timeaccurate implicit integration techniques, and domain decomposition strategies to yield an effectiveapproach for large-scale simulations. The algorithm is mapped to a distributed memoryIBM SP-2 architecture and a shared memory Compaq ES-40 architecture using the MPI-1 message-passingstandard. Two and three-dimensional simulations of time-dependent hydrogen fuel injection into a modelscramjet isolator / combustor configuration at two equivalence ratios are performed. Thesesimulations are used to gain knowledge of engine operability, inlet performance, isolatorperformance, fuel air mixing, flame holding, mode transition, and engine unstart.Results for an injection at a ratio of 0.29 show qualitative agreement withexperiment for the two-dimensional case, but revealed a slow progression towardengine unstart for the three-dimensional case. Injection at an equivalence ratio of 0.61resulted in engine unstart for both two-dimensional and three-dimensional cases.Engine unstart for the three-dimensional case occurs as a response to the formation and growthof large pockets of reversed flow along the combustor side wall. These structuresdevelop at an incipient pressure above 154 kPa and result in significant blockage of the core flow,additional compression, and chemical reaction within the boundary layer. All of these factors promotea much more rapid unstart as compared with the two-dimensional case.<P>

Identiferoai:union.ndltd.org:NCSU/oai:NCSU:etd-20001228-204538
Date05 January 2001
CreatorsMcDaniel, Keith Scott
ContributorsDr. J. R. Edwards, Dr. H. A. Hassan, Dr. D. S. McRae
PublisherNCSU
Source SetsNorth Carolina State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://www.lib.ncsu.edu/theses/available/etd-20001228-204538
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to NC State University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0026 seconds