Return to search

Inhibitory Effect of Warm Water Immersion-induced Hyperthermia on Neurogenic Inflammation in Rat Airways and the Possible Mechanisms

In mammals, the neurogenic inflammatory response can be induced by stimulation or activation on the peripheral sensory C-fibers to release neuropeptides from the peripheral terminals, at the same time their afferent functions are enhanced. There are several neuropeptides stored and released from peripheral terminals of the afferent fibers, such as substance P (SP), neurokinin A, and calcitonin gene related peptide (CGRP). SP is one of the major inflammatory mediators of neurogenic inflammation that can act on neurokinin-1 receptors on smooth muscles and endothelial cells of blood vessels, causing vasodilatation, endothelial gap formation, and local plasma leakage.
There are many studies and reports indicate that animals pretreated with a short period non-lethal hyperthermia can induce heat shock response and activate the expression of a group of inducible proteins called heat shock proteins (HSPs), and this stress response reduces the injury by same or other following stresses. In this study, the hyperthermia treatment (HT) was implemented by 42¢J hot water bath and the core body temperature of anesthetized rat was elevated and maintained around 42.0¡Ó0.5¢J for 15 min, and the normothermia control treatment (NT) was implemented by 37¢J warm water bath with the same period. 24 hours after NT or HT, the neurogenic plasma leakage was induced by intravascular injection with capsaicin (90 £gg/kg), SP (3 £gg/kg), or electrical stimulation on the right thoracic vagus nerve. The blood pressures of each animal were continually recorded during the neurogenic inflammation induction or sham operation. The amount of neurogenic inflammation of airway was evaluated by the area density leaky blood vessels. The leaking vessels were labeled with India ink and quantitative analysis by morphometric method. Plasma leakage was also measured by interstitial Evans blue concentration. The results indicated that HT could reduce plasma leakage and hypotension of the neurogenic inflammation that induced by capsaicin, SP or electrical stimulation on vagus nerve.
Animals pretreated with aminoguanidine (a selective inhibitor of iNOS) had no significant effect on the neurogenic inflammation by following systemic SP infusion, but that could eliminate the anti-neurogenic inflammatory effect of HT. Animal applied with diphenhydramine (an antagonist of histamine H1 receptor) could attenuate the neurogenic inflammation by following systemic SP infusion, and HT could attenuate the neurogenic inflammation that with or without H1 receptor antagonist. This result indicates that NO synthesis and the activity of iNOS have few effects on neurogenic inflammation of airway, but it plays a critical factor on the initiation of heat shock response. The neurogenic inflammation induced by SP not only direct act on blood vessels but have other indirect effect by the histamine H1 receptor to enhance inflammation.
Neonatal rats received high dose capsaicin treatment would induce irreversible sensory C-fiber denervation. The adult rats that were neonatally treated with capsaicin showed a more serious inflammatory response to systemic SP infusion as compared with animals neonatally treated with vehicle. HT still had the anti-inflammatory effects on the neurogenic inflammation that induced by SP. The results indicated that animals with sensory C-fiber denervation might conserve their neurogenic inflammatory responses and were hypersensitive to SP.
In conclusion, the HT could attenuate the neurogenic inflammation that induced by different drugs or methods, and the anti-inflammatory effects were correlated with the increase in HSP72 expression. In the neurogenic inflammation induced by SP, the activation of histamine H1 receptors may enhance inflammation, but the activity of endogenous iNOS was less effective.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0609110-134507
Date09 June 2010
CreatorsFu, Yaw-syan
ContributorsKeh-Min Liu, Jau-Cheng Liou, Rei-Cheng Yang, Ming-Hong Tai, Ching-Mei Hsu, Hung-Tu Hyang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0609110-134507
Rightswithheld, Copyright information available at source archive

Page generated in 0.0024 seconds