Return to search

Distributions and variations of dissolved organic carbon in the Taiwan Strait and Taiwanese rivers

Dissolved organic carbon (DOC) is one of the largest pools of carbon in the ocean, and is of the same size as the carbon dioxide in the atmosphere. Estuaries connecting the land and the ocean are one of the most important DOC sources to the ocean, and play an important role in the global carbon cycle. Because of their complex chemical, physical, geological and biological properties, estuaries have become rich ecological environment. In this study, we investigated the seasonal distributions of DOC in the Taiwan Strait (TS) and Taiwanese rivers, aiming to understand the distributions and variations of DOC in different seasons.
The results show that DOC concentrations are generally the highest in the upper estuary, and then decrease downstream due to mixing with the low DOC seawater. The process of river flow constantly accumulates terrestrial material, and the DOC shows positive correlations with Chl. a, CH4 and BOD (Biochemical Oxygen Demand), suggesting that biological activities and pollutions could be sources of DOC in the estuary. The DOC concentrations (salinity<1) varied in dry (Nov.-Apr.) and wet (May-Oct.) seasons with ranges of 42-1185 £gM (mean=245¡Ó254£gM; n=32) and 18-565 £gM (mean=183¡Ó151£gM; n=24), respectively. The total DOC flux of 25 rivers is 87.8 Gg C/yr, which can be translated to the fluxes of all rivers in Taiwan to be 101.9 Gg C/yr. The amount of DOC flux in Taiwan is only about 0.07% of the tropical area, but the per unit area flux (3.92 gC /m2 /yr) is almost twice those of the tropical rivers (2.13 gC /m2 /yr). In Taiwan, the population density and land use are higher than the world average. Consequently, the impacts of the environment by human activities reveal the utmost export of DOC, and need further investigation.
Next, in the TS, the DOC shows significant negative correlations with Sigma-T, and the distributions of DOC are mainly controlled by physical mixing in both winter and summer. In the western TS, DOC concentration is relatively high, compared to the eastern part, and is because of low temperature and salinity, but high DOC coastal China current flowing from north to south. DOC concentration decreases with increasing depth owing to the intrusion at depth by the Kuroshio, which contains relatively low DOC.
In winter, the import of coastal China current brings more nutrients from north to south, and supports the growth of bacteria which depletes the DOC and oxygen. As the result, DOC decomposition rate is higher in winter than in summer. The TS¡¦s DOC fluxes in summer (northern TS: 3.85¡Ñ1012mol C/yr¡Fsouthern TS: 3.75¡Ñ1012mol C/yr) are higher than in winter (northern TS: 3.69¡Ñ1012mol C/yr¡Fsouthern TS: 2.84¡Ñ1012mol C/yr). Main differences are due to the prevailing southwest monsoon winds in summer transporting more water from the South China Sea to the TS, and the river discharge brings more terrigenous organic matters into the TS. Therefore, the DOC export in summer is higher than in winter.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0704112-170554
Date04 July 2012
CreatorsPan, Pei-Yi
ContributorsLou, J.Y., Hung, J.J., Hung, C.C., Chen, C.T.A., Wang, S. L.
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0704112-170554
Rightsuser_define, Copyright information available at source archive

Page generated in 0.0023 seconds