Return to search

Application of ARIMA and ANN for Load Forecasting of Distribution Systems

The objective of this thesis is to study the load forecasting of distribution feeders and substations for Fong-Shan District of Taiwan Power Company. To increase the accuracy of load forecasting, the load characterization of customers served has been investigated. The typical load patterns of different customers classes and derived by performing the statistic of power consumption data retrieved. The daily load profiles and load consumptions data distribution feeders and substations have been solved by considering the typical load patterns and energy consumption of all customers served. To investigate the correlation ship of temperature and energy consumption of customer classes, the temperature sensitivity of customer energy consumption has been used to update the load composition and the contribution of load change by different customer classes.
To perform the load forecasting of distribution systems, the linear, nonlinear and hybrid load forecasting modules have been proposed. The historical load data of distribution feeders and substations in Fong-Shan District have been used to derive the load forecasting modules. To analyze the accuracy of load forecasting by considering the temperature effect, the temperature change is included in the load forecasting module. With the load forecasting derived, the proper load transfers among different distribution feeders and different substations have been determined to achieve the load balancing of service areas.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0705106-230958
Date05 July 2006
CreatorsKu, Te-Tien
ContributorsChia-Hung Lin, Meei-Song Kang, Chao-Shun Chen
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0705106-230958
Rightscampus_withheld, Copyright information available at source archive

Page generated in 0.0016 seconds