Return to search

growths of bubble sizes in solid during solidification

The sizes of a bubble trapped in solid after nucleation on the solidification front during an upward freezing of water containing a dissolved oxygen or carbon dioxide gas are experimentally measured and quantitatively predicted in this work. From an in situ measurements of bubble shapes in solid at cold temperatures of -25 and -15 C, it quantitatively shows that pore formation can be divided into five regimes: (1) nucleation on the solidification front, (2) spherical growth, (3) solidification rate-controlled elongation, (4) disappearance of the bubbles, and (5) formation of the pores in solid. To interpret experimental results, equations incorporated with the growth rate of a spherical bubble and solidification rate to predict bubble shapes in the solid during the spherical growth and solidification rate-controlled elongation are successfully proposed. Experimental data show the effects of initial gas concentration and solidification rate on geometries of the bubble in solid.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0713105-094949
Date13 July 2005
CreatorsChen, Kuan-yu
ContributorsJiin-Yuh Jang, F.B Hsiao, F. K. Chung, P.S.Wei
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0713105-094949
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0024 seconds