Return to search

ZnSe-based Epitaxial Growth on GaP Substrate by MOCVD

ABSTRACT
Recently, there has been an increasing interest in the fabrication and theory of self-assembled quantum dots (SAQD). Self-assembled quantum dots are of great interest because of good optical properties and device applications such as quantum dot lasers and memory device. The main merit of laser based on quantum dot is both the low threshold current density and low temperature sensitivite.
We can grow the ZnSe quantum dot on GaAs substrate. The maximum value of dots density is 1.3¡Ñ109cm-2 at 16.7 of ¢¾/¢º ratio. The dots densities are increasing by the flow rate of DEZn and H2Se. When the ¢¾/¢º ratio are lager than 16.7 or smaller than 7.5 will lead to quantum dots increasing. The blue shift is from 8 nm to 15 nm by quantum confinement.
The high quality of ZnS0.81Se0.19 epilayers on GaP substrate are grown with DEZn, H2Se, H2S and H2 fixed at 2.4 sccm, 10 sccm, 10 sccm and 1 slm respectively, and prepared at 340¢J and 50 min. High quality ZnS0.81Se0.19:N epilayer which was lattice-matched to GaP substrate has been prepared. The FWHM of X-ray diffraction was 720.2 arcsec. Its R-value was 5.20%. Then we grow ZnSe quantum dots / ZnS0.81Se0.19/GaP. The largest density of quantum dots is 1.1¡Ñ109 cm-2 at 30 s growth time.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0715102-164933
Date15 July 2002
CreatorsYan-Yu, Chen
ContributorsJ. H. Chang, M. K. Lee, M. Chen, W. C. Hsu
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0715102-164933
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0019 seconds