Return to search

Analysis and Application of a Hybrid Subgridding Scheme Using the CNDG-FDTD Algorithm

¡@In this thesis, a novel subgridding scheme is proposed based on the hybridization of the FDTD and CNDG-FDTD algorithms. The FDTD method is applied to the coarse grid region, while the CNDG-FDTD method is used in the fine grid region. Because of the unconditional stability of the CNDG scheme, the temporal step size can be set equal to that in the coarse grid region to speed up the computation in the fine grid region. Furthermore, the temporal interpolation at the fine and coarse grids interface is no longer necessary and thus the complexity of spatial interpolation is largely reduced.
¡@As the CNDG-FDTD method is free from the CFL condition restraint, it saves a large amount of CPU time. Numerical results agree very well with that of the FDTD scheme. But it requires a larger amount of computer memory, at least 20% more than the FDTD method. A modified version of the CNDG-FDTD scheme with increased memory efficiency is also presented. It has not only eliminated the restraint of the CFL condition, but also achieved a more efficient saving of CPU time and computer memory requirements.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0720107-142812
Date20 July 2007
CreatorsLin, Ting-Chun
ContributorsTzyy-Sheng Horng, Ming-Cheng Liang, Chih-Wen Kuo, Ken-Huang Lin
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720107-142812
Rightsrestricted, Copyright information available at source archive

Page generated in 0.0018 seconds