Return to search

Role of yeast ArsA homologue ARR4 in thermotolerance of Saccharomyces cerevisiae

The ArsA homologue ARR4 in Saccharomyces cerevisiae, encoded by YDL100C. Homologues of the E. coli ArsA are found in S. cerevisiae about 29 % from Genetic Computer Group (GCG). The ARR4 gene product contains an ATP binding site that is similar to protein ArsA from E. coli
Disruption of ARR4 in yeast is not lethal but the disrupted strain was unable to grow at 40¢J, suggesting that the possible cause of cell death in KO strain at 40¢J was investigated. The accumulation of trehalose and the in vivo molecular oxidation level are higher in KO strain than that in WT strain under heat stress condition. These suggest that the increased reactive oxygen species (ROS) but not the amount of thermoprotectant trehalose is most likely to be the reason for cell death in KO strain. In this report ROS scavenger system show that the activities of ROS scavenger system are lower in KO compared to that in WT strain at 30¢J or 40¢J. This suggests that ARR4 is involved in the heat stress ¡Boxidative stress and osmatic stress triggers activation of the STRE ( stress tolerance response element) regulon.
Further studies involvement ARR4 of CTT1, SOD1, and TSL1 gene of STRE-drive gene by RT-PCR. Here the report that the KO strain exhibits a thermosensitivity phenotype in comparison to wild-type strain, indicating that ARR4 may act as a component of a stress tolerance network.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0724102-045920
Date24 July 2002
CreatorsKuo, Ya-Po
ContributorsZin-Huang Liu, Chung-Lung Cho, Ching-Mei Hsu
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0724102-045920
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0026 seconds