Return to search

The formation of m-plane (10-10) GaN on LiGaO2 substrates via diffusion with NH3

¡@¡@In this thesis, the formation of m-plane (10-10) Gallium nitride (GaN) on the surface of a-plane (100) lithium gallate (LiGaO2, LGO) substrates via nitridation with ammonia (NH3) at high temperature. The parameters in this research were mainly focus on temperature, ammonia flow rate, reaction pressure, and growth time.
¡@¡@Specimens were analyzed with various instruments. X-ray Diffraction patterns showed that the nitridation process on LGO substrate resulted in the formation of the GaN single crystalline films. The crystalline quality of the GaN film could be improved by changing parameters of nitridation process. Scanning electron microscope image showed that the structure of GaN films was nanoporous. A red shift in the E2(high) phonon peak of GaN from micro-Raman indicates a compressive stress in the porous GaN with respect to the single crystalline epitaxial GaN. PL intensity ratio (INBE/IYL) of the porous GaN was found to be increased as changing parameters of nitridation process, namely the optical and crystalline quality of porous GaN was improved. Hall measurement showed that the porous GaN was p-type, and it had high hole concentration, good mobility, and low resistivity. Analyses of the elements depth profile by Auger electron spectroscopy. Transmission electron microscopy was used to observe the high resolution cross-section of porous GaN. From the selected area electron diffraction patterns, the orientation relationship between porous and LGO was determined as [100]LGO//[10-10]GaN and [0-10]LGO//[11-20]GaN when zone axis was [0001].

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0724112-030207
Date24 July 2012
CreatorsWang, Cin-Huei
ContributorsMing-Chi Chou, none, none, none
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0724112-030207
Rightsuser_define, Copyright information available at source archive

Page generated in 0.0024 seconds