Return to search

The Effects of N-terminus and Disulfide Bonds of Capsid Protein on Particle Formation and Thermal Stability of Grouper Nervous Necrosis Virus

Grouper nervous necrosis viruses belong to the Betanodavirus genus in the Nodaviridae family that is a group of small, non-enveloped icosahedron viruses. More than 30 species of fish are infected by the betanodaviruses, which cause massive mortality in hatchery-reared larvae and juveniles. The infection causes great economic losses to aquaculture and sea-ranching. To study the effects of N-terminus and disulfide bonds of capsid protein on particle formation and thermal stability of grouper nervous necrosis virus, virus-like particles (VLPs) of dragon grouper nervous necrosis virus (DGNNV) were used.
Deletion of 35 residues at the N-terminus completely ruined the VLP assembly. When deletions were restricted to 4, 16, or 25 N-terminal residues, the assembly of VLPs remained. Site-directed mutagenesis was used to investigate the effects of N-terminus of capsid protein on particle formation and thermal stability of grouper nervous necrosis virus. Althought all arginine mutants could produce VLPs, the relative amounts and thermal stabilities of arginine-mutated VLPs were decrease. The VLPs from £GN25-R29A and £GN25 mutants have similar structural properties on particle formation and thermal stability. Therefore, the effects of Arg29 mutations are negligible. The relative amounts and thermal stabilities of VLPs from £GN25-R30A and £GN25-R31A mutants are lower than £GN25-R29A VLP. When 25 amino acids at N-terminus of DGNNV capsid protein were removed, Arg30 and Arg31 are important for particle formation and particel stability. Although particle could form as 12 positively charged amino acids were lost (¡µN25-R293031A), the efficiency of particles assembly were decrease to 1.2 ¡Ó 0.9% as compare to wild-type VLPs (WT-VLPs).
Site-directed mutagenesis and chemical reducing reagents were used to investigate the roles of disulfide bonds in particle formation and thermal stability of grouper nervous necrosis virus. The homogeneous particles from C187A, C331A and C187A/C331A mutants are indistinguishable from the native virus and WT-VLPs in their sizes and shapes. C115A and C201A mutants could not produce VLPs. The dissociated capsomers from arginine- or cysteine-mutant VLPs all can be reassembled to icosahedrons with efficiencies as high as 100%. When VLP particles are pre-fabricated, the reducing agent cannot disrupt the VLP icosahedron structure. The thiol reduction only caused effects on the disulfide linkages inside the icosahedrons. £]-mercaptoethanol-treated WT-VLPs could not tolerate the thermal effects at a temperature higher than 70¢XC. Once the disulfide linkages in dissociated capsomers were entirely disrupted by £]-mercaptoethanol treatment, the resulting capsomers could not reassemble back to icosahedron particles.These results indicated that Cys115 and Cys201 were essential for capsid formation of DGNNV icosahedron structure in de novo assembly and reassembly pathways, as well as for the thermal stability of pre-fabricated particles.
In the observation of Cryo-EM, the shapes and sizes of the N-terminus truncated particle (£GN25-VLP) are indistinct from the full-length particle (WT-VLP). The maximum diameter of DGNNV is approximately 380 Å. Like that of the insect nodaviruses, the surface morphologies of £GN25-VLP and WT-VLP are consistent with a T = 3 quasi-equivalent lattice. The protrusions (~154 to 192 Å), the inner shell of the capsid (~112 to 154 Å), and the RNA (¡Õ112 Å) were observed in the DGNNV structure. The protrusion domain is consisting of three capsid subunits, and the interactions between these subunits are different. Deletion of 25 residues at the N-terminus did not affect VLPs formation and the structure of £GN25-VLP is similar to WT-VLPs. Resolutions was calculated by Fourier shell correlation, and the resolution of WT-VLPs and £GN25-VLPs is 6.5Å and 11.8Å, respectively.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0726110-223649
Date26 July 2010
CreatorsWang, Chun-Hsiung
ContributorsYi-Ren Hong, Zhi-Hong Wen, Jong-Kang Liu, Min-Ying Wang, Wei-Hau Chang, Chi-Hsin Hsu, Chan-Shing Lin
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0726110-223649
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0024 seconds