Return to search

High-performance Low-power Configurable Montgomery Multiplier for RSA Cryptosystems

The communication technology is changing rapidly every day, and the internet has played a very important role in our lives. Through specific protocols, people transform the data into 0¡¦s and 1¡¦s as digital signals and transfer them from sender to receiver via the network. Unfortunately, data transfer through the internet is open to the public, and too much exposure of private data may be a serious risk. To avoid this situation, we can encrypt the data before transmission to guarantee data confidentiality and privacy.
The RSA encryption system is a simple and highly secure public key cryptosystem, but the encryption and decryption process requires a lot of exponentiation operations and division operations. In order to improve the reliability of the encrypted data, the operands are usually larger than 512 bits. If software is used to perform encryption and decryption, real time application will not be sufficed, since software lacks performance. For this reason, the RSA must be implemented in hardware. Since then, many methods of refining the effectiveness of the RSA encryption and decryption hardware have began to be developed.
This research proposes a new Modular Multiplier architecture similar to the original Montgomery Modular Multiplier and the RSA encryption system, which is composed by simple adders, shifting registers and multiplexers. What¡¦s more, we¡¦ve also proposed new concepts including the Quotient Lookahead and the Superfluous Operation Elimination to further enhance the performance. The test results show that our design can reduce the total cycle count by 19%, and also save the overall energy consumption. Due to the features of high performance and energy saving, the proposed design is suitable for portable devices which have low power requirements.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0803110-151148
Date03 August 2010
CreatorsChang, Kai-cheng
ContributorsPei-Yin Chen, Yeu-Horng Shiau, Shiann-Rong Kuang, Yeu-Horng Shiau, Ren-Der Chen
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0803110-151148
Rightscampus_withheld, Copyright information available at source archive

Page generated in 0.2294 seconds