Return to search

A Dynamic Queue Adjustment Based on Packet Loss Ratio in Wireless Networks

Traditional TCP when applied in wireless networks may encounter two limitations. The first limitation is the higher bit error rate (BER) due to noise, fading, and multipath interference. Because traditional TCP is designed for wired and reliable networks, packet loss is mainly caused by network congestions. As a result, TCP may decrease congestion window inappropriately upon detecting a packet loss. The second limitation is about the packet scheduling, which mostly does not consider wireless characteristics.
In this Thesis, we propose a local retransmission mechanism to improve TCP throughput for wireless networks with higher BER. In addition, we measure the packet loss ratio (PLR) to adjust the queue weight such that the available bandwidth for each queue can be changed accordingly. In our mechanism, the queue length is used to determine whether there is a congestion in wireless networks. When the queue length exceeds a threshold, it indicates that the wireless networks may have congestion very likely. We not only propose the dynamic weight-adjustment mechanism, but also solve the packet out-of-sequence problem, which results form when a TCP flow changes to a new queue.
For the purpose of demonstration, we implement the proposed weight-adjustment mechanisms on the Linux platform. Through the measurements and discussions, we have shown that the proposed mechanisms can effectively improve the TCP throughput in wireless networks.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0813103-170950
Date13 August 2003
CreatorsChu, Tsuh-Feng
ContributorsChung-Ming Huang, Ren-Hung Huang, Tsang-Ling Sheu, Ce-Kuen Shieh, Wei-Kuang Lai
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0813103-170950
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0017 seconds