Return to search

Sliding-Mode Quantized Control with Application to a Three-Level Buck Converter

A quantized control means that the control force is restricted to takes only a finite number of prescribed levels. The well-known bang-bang control or relay control belongs to this category. This kind of control has the advantage of simple circuit realization using electronic switches or relays that feature low power consumption in their on-off operation. However, quantized control introduces noise and distortion, and even worse its high nonlinearity makes the stabilizing compensator design difficult. This thesis applies the concept of dynamic sliding mode to the synthesis of a multi-level quantized control, with the aim to stabilize the system, perform reference tracking and attenuate the switching noise.
The applicability of the presented sliding-mode quantized control is demonstrated on a three-level buck converter. Compared with the conventional PWM (Pulse-Width Modulation) scheme, it eliminates the use of a complex three-level PWM generator and a current sensor. A 12V/8V three-level buck converter with sliding mode quantized control is designed and realized, which shows the output voltage with 0.4625% of average DC error, 2.8988% of the static output ripple and 2.3% of load regulation error in response to the load current steps from 0A/3A to 3A/0A, at a slew rate of 6.25A/£gsec.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0815107-162259
Date15 August 2007
CreatorsLin, Yuan-Kai
ContributorsChih-Chiang Cheng, Shiang-Hwua Yu, Jih-Ching Chiu
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0815107-162259
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0015 seconds