Return to search

The implementation of H.264 algorithm with parallel extended MMX instruction set

The H.264 Protocol is an important method for the multimedia transmission and calculation, but it is difficult to work smoothly on the embedded systems because of the low clock in the working environment of the embedded system .Although many new multimedia instruction sets have been developed, the immediate multimedia calculation is still difficult to implement on the embedded system.
So this paper uses the ¡§Multimedia Operation Register¡¨, a SIMD architecture, to implement H.264 algorithm on the embedded system to improve the performance of handling multimedia calculation. Multimedia Operation Register, which performs the parallel execution of the multi-data-streaming, uses the bit slice concept to design operation pair combining bit storage cell and bit computation. According to the characteristic , which is the address having constant distance between more than two data being used saved in the Memory, this paper using the striping addressing mode , which can cooperate with the parallel execution of multi-data-streaming , to load the data having strode addresses from the Memory in one instructions. On the other hand, this paper designs a new instruction set based on the Intel MMX instruction set and the operation feature of multimedia calculation.
When a designer uses single-data-steaming to implement the H.264 Protocol by the multimedia instruction sets, he will use more interactions to do the same thing in every block. Now this paper can use fewer interactions to do the same thing because the Multimedia Operation Register can use the parallel execution of the multi-data-stream to calculate the data in many different blocks to implement H.264 Protocol at the same time. On the other hand, this paper can reallocate the number of the registers to the arithmetic unit which will be used smartly by changing the working mode. This paper also saves much execution time of some actions such as the transpose of the matrix, the data resorting and the SAD (Sum of Absolute Differences) calculation by using new instructions. In order to reduce the times of memory access, this paper uses the method which rotates the data between two registers to let the data been used as possible as it can. So the coding efficiency can be improved explosively by using all the methods which have been introduced.
The conclusion in this paper shows that the parallel execution of the multi-data-streaming will be a very important method to handle multimedia calculation. And this paper advances an innovative architecture to implement the parallel execution of the multi-data- streaming. According to the simulation in 5th chapter, the speedup of handling H.264 Protocol by Multimedia Operation Register is more than four times with MMX instruction set. In the SAD calculation, it even can have ten times advanced then MMX instruction set. At last the efficacy is even better than the latest multimedia instruction set -¡§SSE4¡¨.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0820108-142507
Date20 August 2008
CreatorsShen, Cheng-Ying
ContributorsChung-Ping Chung, Jih-ching Chiu, Chia-Hung Yeh
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0820108-142507
Rightsnot_available, Copyright information available at source archive

Page generated in 0.002 seconds