Return to search

Simultaneous Determination of Quinolones in Marine and Livestock Products and Pharmacokinetics of Enrofloxacin in Tilapia

The study felld into three sections. The first section that a liquid chromatography method with fluorescence detection was developed for simultaneous determination of 11 quinolones (QNs; marbofloxacin, norfloxacin, ciprofloxacin, lomefloxacin, danofloxacin, enrofloxacin, sarafloxacin, difloxacin, oxolinic acid, nalidixic acid and flumequine) in chicken, pork, fish and shrimp. The analytes were extracted with 0.3% metaphosphoric acid: acetonitrile (1:1, v/v), followed by a HLB cartridge clean-up procedure. The HPLC separation was carried out on a symmetry column C18 (250 mm x 4.5 mm i.d., 5 £gm) with linear gradient elution of 0.1% formic acid: acetonitrile as mobile phase and programmable fluorescence detection. The method was validated by spiking blank animals tissues at three different levels (25, 50 and 250 ng/g; except 6.25, 12.5 and 62.5 ng/g for DAN) and linearity, detection limit, quantification limit, precision and accuracy were checked. Mean recoveries of 11 QNs from edible animal tissues were 71.7-105.3%. The limits of quantification in different muscle tissues ranged from 5.0 to 28.0 ng/g. The results showed it was simple, rapid, sensitive and suitable for routine test.
The second section that a LC-ESI-MS/MS method was developed for determining 18 (fluoro)quinolone (QNs) residues in milk, chicken, pork, fish and shrimp. This method is capable of screening and confirming the presence of 12 amphoteric QNs (marbofloxacin, norfloxacin, enrofloxacin, ciprofloxacin, desethylene ciprofloxacin, lomefloxacin, danofloxacin, sarfloxacin, difloxacin, ofloxacin, orbifloxacin and enoxacin) and 6 acidic QNs (oxolinic acid, nalidixic acid, flumequine, cinoxacin, piromidic acid and pipemidic acid). The drugs were extracted from matrix using acetonitrile with 1% formic acid, diluted in 10% acetonitrile and defatted by extraction with hexane. The LC separation was conducted on a XDB C8 (150 x 4.6 mm, 5£gm) column with gradient elution of 20 mM ammonium formate with 0.1% formic acid¡Vacetonitrile as the mobile phase. Mass spectral acquisition was completed in the positive ion mode by applying multiple reaction mode (MRM). The decision limit (CC£\) and detection capability (CC£]) stated in the Decision No. 2002/657/EC and the ISO standard No.11843, has been calculated in the case of the nonauthorized substance. The values of CC£\ ranged from 0.18 to 0.68 ng/g and CC£] ranged from 0.24 to 0.96 ng/g under specified conditions.
The third section that the pharmacokinetics of ENR and its active metabolite (CIP and des-CIP) were estimated in tilapia after intravenous (i.v.) and oral (p.o.) administration of a single dose of 2.5 and 10 mg/kg body weigh, respectively. At prefixed time points, from 0.25 h to 7 days after administration, whole blood and main tissue (liver, kidney, bile and muscle) from 4 individuals in each were collected. The concentration of ENR and its active metabolites in the main tissue were simultaneously detected by LC/MS/MS method. Limited of quantitation (LOQ) of this method were 0.01£gg/g. Pharmacokinetic parameters from both routes were described to have a two- compartment open model with first-order elimination. After i.v. administration, the area under the drug concentration-time (AUC), elimination half-life (t1/2£]), maximum plasma concentration (Cmax ), total body clearance (Cltot) and apparent volume of distribution at steady-state (Vss) of ENR were 109.6 ¡Ó 31.33 £gg.h/mL, 55.17 ¡Ó 22.84 h, 4.70 ¡Ó 0.36 £gg/mL, 14.82 ¡Ó 4.24 L/h/kg, 1105 ¡Ó 223.40 L/kg ,respectively. After oral administration, the AUC , t1/2£], Tmax , Cmax of ENR were 599.42 ¡Ó 76.19£gg.h/mL , 75.95 ¡Ó 12.94 h, 0.601¡Ó0.06h, 9.75 ¡Ó 0.46£gg/mL, respectively. After p.o. administration, CIP could be detected in liver, kidney and bile. Regarding des-CIP, the main active metabolite of CIP, could be detected in 120¡ã168 h bile among tissue. ENR and CIP had significance enterohepatic cycle in Tilapia and easily accumulated in bile. It seems reasonable to explain the phenomenon of ENR and CIP maintenance of high concentration in blood and muscle during the test time.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0821109-172026
Date21 August 2009
CreatorsChang, Chui-Shiang
ContributorsI-Ming Chen, Wei-Hsien Wang, Chin-En Tsai
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0821109-172026
Rightsoff_campus_withheld, Copyright information available at source archive

Page generated in 0.0027 seconds