Return to search

The expression of TSG101 and RET gene in thyroid carcinoma specimens.

The aim of this thesis is to evaluate the expression of both TSG101 tumor susceptibility gene and ret oncogene in human thyroid carcinoma specimens.
Functional inactivation of TSG101 in mouse fibroblast leads to cellular transformation and the ability to form metastatic tumors in nude mice. No genomic deletion of TSG101 gene has been reported in human cancer, casting a doubt on the role of TSG101 as a classical tumor suppressor. Subsequent studies reveal that TSG101 is a frequent target of spilicing defects, which is correlated with cellular stress and p53 status, and might reflect the cellular environment during the cancer development. Furthermore, recent reports demonstrate TSG101 as a part of the MDM2/p53 regulatory circuitry, a well recognized circuitry that upon deregulation results in tumorigenesis. In this study we have analyzed TSG101 gene expression in 85 specimens of thyroid carcinomas. The results indicated that 100% of papillary carcinomas (48/48), 85% of follicular carcinomas (18/21), 91% of medullary carcinomas (10/11) and 60% of undifferentiated carcinomas (3/5) showed strong to moderate cytoplasmic staining, whereas the staining was completely negative, or cytoplasmic dot-staining in the adjacent non-neoplastic follicular cells. Occasionally, the staining could be found in the nucleus. Subsequently, sequence analysis of 17 papillary carcinoma specimens revealed no mutation in steadiness box region, indicating that it might not be the cause of TSG101 protein overexpression. In summary, our results indicate strong correlation of TSG101 overexpression and thyroid carcinomas. Further experiments are urged to clarify the relationship of TSG101 overexpression and thyroid tumorigenesis.
Rearrangement of ret proto-oncogene is unique to papillary thyroid carcinoma (PTC). These rearrangements consist of the fusion of ret tyrosine kinase domain to a variety of heterologous genes, thus generating chimeric transforming oncogenes termed, ret/PTC. The frequency of ret/PTC activation in non-radiation exposured adult populations has been reported to vary from 0-55% depending on the geographic distribution. To detect ret rearrangement and to identify candidate of novel ret/PTC in 62 specimens of PTC collected from southern Taiwan, a RT-multiplex PCR method was used to reveal the possible specimens that harbor ret rearrangements. Type specific-PCR amplification and subsequent sequence analysis of PCR product were performed to identify the known types of ret/PTC. We have identified two cases of ret/PTC1, two cases of ret/PTC3 and one case of ELKS-RET. Excitingly, four cases of unknown ret/PTC type were identified. Hence, 5¡¦-RACE strategy will be employed to identify novel ret/PTC in these four specimens.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0828101-111807
Date28 August 2001
CreatorsChao, Fang-Ping
ContributorsJiin-Tsuey Cheng, Chung-Lung Cho, Rue-Tsuan Liu
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0828101-111807
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0024 seconds