Return to search

Study of the Sound Field Characteristics in Phononic Crystal Using the Boundary Element Method

¡§Phononic crystal,¡¨ a binary-composite medium composed of a square array of parallel circular steel cylinders in a air matrix is studied. Phononic crystal exists full band-gaps phenomenon which is caused by strongly constructive interference of Bragg reflection in their acoustic transmission spectrum. The Bragg reflection theorem is also a basis for searching the full band-gaps in this thesis.
This thesis applies the boundary element simulation software BEASY to analyze the sound field characteristics of solid/fluid composite medium, phononic crystal. The forbidden bands of the band gap are shown by the relative amplitude in the incidence before and after. First, the study by Varadan and Faran aims at scattering sound field of the single rigid sphere and the circular cylinder in water which constructed a simulation of the boundary element model. It is compared to under the different kr change result of its scattering sound field and it has demonstrated that our simulation work was feasible. Second, the study constructs the boundary element model for a two-dimensional phononic crystal which was studied by Sánchez-Pérez etc. with experimentation, constituted of rectangular and triangular array of parallel circular stainless steel and aluminum cylinders in air. The study is compared with the forbidden bands of the band gap in the reference which performs the simulations with the mono-frequency by sweep. The full band gaps are determined from the combination of the results in both the [100] and [110] direction. Finally, the study aimed at the scattering pattern of sound field in phononic crystal to make discussion. In order to understand the sound source acts on the phononic crystal, the status of the sound pressure is distributed over the spatial. So it could get up to reduce the influence of the noise by way of the improvement the structure in phononic crystal.
The study has successfully shown the boundary element simulation for the solid/fluid phononic crystal. The study of experiment in the reference is compared with the BEM simulation in this thesis. The results have demonstrated that the boundary element method is a good tool for the design of phononic crystal in application to new type sound absorption (isolation) material in the future.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0831107-164558
Date31 August 2007
CreatorsHuang, Po-wei
ContributorsShao-Yi Hsia, Shiuh-Kuang Yang, Shyue-Jian Wu, Jin-Jhy Jeng, Bor-Tsuen Wang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0831107-164558
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0025 seconds