Return to search

Design of Iterative Cascade Sorter Architecture

This thesis presents a new cascaded iterative VLSI sorting architecture that can accelerate data sorting of variable-length sequences. The proposed sorter mainly consists of a central data memory block, a core comparison unit, and a special address generation module. Many fast sorting algorithms can be represented by a network of compare-and-swap (C&S) operations which can be divided into several processing steps. Instead of using parallel C&S functional units to perform C&S operations of the same sorting step, our comparison unit is composed of cascaded C&S units connected through data commutator such that different sorting steps can be processed simultaneously. The advantage of cascaded architecture is that the number of data memory accesses can be reduced by a factor equal to the number of cascaded stages. However, how to reduce the overhead of the data commutator becomes the most critical design issue. This thesis has explored the feature of C&S operation order in Bitonic sorting such that much simpler and more regular data commutator module can be achieved compared with the previous cascade design derived based on Batcher sorting. Therefore, the cascade level of our sorter architecture can be more than 2. A sample of 4-level cascade sorter has been implemented in our thesis. To generate the address sequence suitable for the proposed cascaded comparison unit, this paper proposes a low-cost address generator design based on the bit-permutation technique. Although high cascade level can lead to significant reduction of memory access which can help reducing the power dissipation, the issues of low hardware utilization for short data sequences and the increasing commutator overhead cannot be neglected. Therefore, to achieve further speed-up, this paper also adopts another parallelism approach for data sorter design by utilizing block-level C&S units which can compare a block of data at the same time. The block-level C&S units can be designed based on traditional Batcher¡¦s sorting network. Based on the proposed Bitonic cascade and Batcher¡¦s block sorting approaches, very fast and low-power sorter hardware can be achieved.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0906111-024836
Date06 September 2011
CreatorsChen, Cheng-Chieh
ContributorsShiann-Rong Kuang, Yun-Nan Chang, Shen-Fu Hsiao
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0906111-024836
Rightsuser_define, Copyright information available at source archive

Page generated in 0.0035 seconds