Return to search

Blind Adaptive Multiuser Detection for DS-CDMA System Based on Sliding Window RLS Algorithm

Direct sequence code division multiple access (DS-CDMA) technique is one of the significant multiplexing technologies used in wireless communication services. In the DS-CDMA framework, all users have been assigned distinct signature code sequence to achieve multiple accesses within the same frequency band, and allow signal separating at the receiver. Under multipath fading environment with near-far effect, the current CDMA systems employed the RAKE receiver, to enhance the system performance. It is known that if training data is available the minimum mean squares error (MMSE) multiuser receiver, in which the average power of the receiver output is minimized subject to appropriate constraints, could be obtained by solving directly by the constrained Wiener estimation solution. However, if this is not the case, the blind multiuser receiver is an alternative approach to achieve desired performance closed to the one with the MMSE approach.
In this thesis, based on the max/min criterion, the blind multiuser receiver, with linear constraints, is devised. Here constraint equations are written in parametric forms, which depend on the multipath structure of the signal of interest. Constraint parameters are jointly optimized with the parameters of the linear receiver to obtain the optimal parameters. In consequence, the sliding window linearly constrained RLS (SW-LC-RLS) algorithm is employed to implement the optimal blind receiver, with max/min approach. This new proposed scheme can be used to deal with multiple access interference (MAI) suppression for the environments, in which the narrow band interference (NBI) due to other systems is joined suddenly to the DS-CDMA systems, and having serious near-far effect. Under such circumstance, the channel character due to the NBI and near-far effect will become violent time varying, such that the conventional LC-RLS algorithm as well as LC-LMS algorithms could not perform well. Via computer simulation it confirms that our proposed scheme has better capability for MAI suppression in DS-CDMA systems than other existing schemes, and is more robust against the NBI and near-far problems.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0910104-232327
Date10 September 2004
CreatorsPan, Wei-Hung
ContributorsShiunn-Jang Chern, Chin-Der Wann, Miin-Jong Hao, Hsin-Hsyong Richard,Yang, Chin-Hsing Chen
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0910104-232327
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0025 seconds