Return to search

Anti-Spam Study: an Alliance-based Approach

The growing problem of spam has generated a need for reliable anti-spam filters. There are many filtering techniques along with machine learning and data miming used to reduce the amount of spam. Such algorithms can achieve very high accuracy but with some amount of false positive tradeoff. Generally false positives are prohibitively expensive in the real world. Much work has been done to improve specific algorithms for the task of detecting spam, but less work has been report on leveraging multiple algorithms in email analysis. This study presents an alliance-based approach to classify, discovery and exchange interesting information on spam. Furthermore, the spam filter in this study is build base on the mixture of rough set theory (RST), genetic algorithm (GA) and XCS classifier system.
RST has the ability to process imprecise and incomplete data such as spam. GA can speed up the rate of finding the optimal solution (i.e. the rules used to block spam). The reinforcement learning of XCS is a good mechanism to suggest the appropriate classification for the email. The results of spam filtering by alliance-based approach are evaluated by several statistical methods and the performance is great. Two main conclusions can be drawn from this study: (1) the rules exchanged from other mail servers indeed help the filter blocking more spam than before. (2) a combination of algorithms improves both accuracy and reducing false positives for the problem of spam detection.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0912106-173411
Date12 September 2006
CreatorsChiu, Yu-fen
ContributorsChia-Mei Chen, Jeng-Bing Chiang, Cheng-Fa Tsai, Chu-Sing Yang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0912106-173411
Rightscampus_withheld, Copyright information available at source archive

Page generated in 0.0019 seconds