Return to search

Effects of fabrication processes on the electrical properties of n-ZnO/AlxSi(1-x)Oy/p-Si pin diodes

In this thesis, n-type ZnO thin films are grown on buffered p-type Si substrates by RF sputtering. The buffer is a pure nanometer-thick Al layer deposited onto a Si substrate that has a native SiOx over-layer. The Al- layer is meant to react with the native oxide and reduce it back to the pure Si formation when the Al-layer is itself oxidized into AlOx. The pin diodes with ZnO grown on AlOx are expected to outperform those with ZnO on SiOx on the aspects of electrical quality and crystallographic
orientations.
The transmission electron microscopy was employed to study the epitaxial relationship between the ZnO layers and the Si substrates, the crystal structure, and defects at the ZnO-Al or Al-SiOx interfaces. X-ray diffraction studies through £s-2£c, rocking curve, GIXRD and pole-figure scans were also conducted to see the differences between as-deposited and post-annealing treated samples concerning with the ZnO crystallographic orientations and general qualities. Through comparisons of the leakage current and the tunneling behaviors , the electrical
measurements can be used to analyze the pin devices.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0912112-161454
Date12 September 2012
CreatorsLin, Jiun-jie
ContributorsYung-Sung Chen, Der-Jun Jang, Chih-Hsiung Liao, Li-Wei Tu
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0912112-161454
Rightsuser_define, Copyright information available at source archive

Page generated in 0.0018 seconds