Return to search

The Study of Thermo-mechanical Behavior of PBGA Package's Interface

The Plastic Ball Grid Array (PBGA) package and flip-chip technology have been widely used in the microelectronics industry. However, due to the effect of hygroscopic and thermal stresses, the reliability is still of concern during manufacturing and operation, especially for the thermal-mechanical behavior of its corresponding interfaces. Influences of the storage conditions and reflow parameters on the warpage of the PBGA package are investigated in this study first. As the results, the warpage reflected the interaction of the extent of moisture absorption and the change in reflow parameters significantly. Furthermore, a critical relative moisture absorption between 0.25% and 0.30% is found for a considerable warpage response. Next, this study presents an experimental investigation of the adhesion strength of epoxy-based encapsulant material to solder mask coated FR-4 substrate under thermal cycling. Effects of the number of thermal cycles on the interfacial strength are investigated by using button shear test. The relationship between the interfacial strength and thickness of solder mask is also examined. Moreover, to characterize the degradation and fracture behavior, the morphologies of fractured surfaces of the test specimens are analyzed by scanning electron microscopy. The results of this experiment show that the interfacial strength of the epoxy-based encapsulant/solder mask/substrate joint is apparently reduced by thermal fatigue. And, the test specimen with larger solder mask thickness has higher interfacial strength. Finally, the single-lap joint test, nonlinear finite element analysis and Moiré interferometry are employed to obtain strain/stress distributions on the interface of solder mask and substrate. The effects of solder mask thickness and overlap length are then determined, separately. The results of this study can afford important information for characterizing the features of moisture absorption, warpage and interfacial adhesion of PBGA packages. Furthermore, it can be helpful to identify improvements required in reliability of the package design.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-1016103-084812
Date16 October 2003
CreatorsChen, Yung-Chang
ContributorsShou-Shing Hsieh, Ing-Rong Horng, Chi-Hui Chien, Jao-Hwa Kuang, none, Ming-Hwa R. Jen, none, none
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-1016103-084812
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.002 seconds