Return to search

The mechanisms and possible therapeutic methods of spinal cord ischemia-reperfusion injury

Objective: Ischemic spinal cord injury is a serious complication of aortic surgery. The mechanism underlying ischemic preconditioning (IPC) protection against spinal cord ischemia/reperfusion (I/R) injury is unclear. We investigated the role of spinal cord autoregulation in tolerance to spinal cord I/R injury induced by IPC. Although the extracellular signal-regulated kinases 1 and 2 (ERK1/2) are generally regarded as related to cell survival and proliferation, increasing evidence suggests that the role of the ERK1/2 pathway in I/R injury is contributory to inflammation. We investigated the effect of blocking ERK1/2 pathway to inhibit inflammation reaction in tolerance to spinal cord I/R injury.
Methods: In the part 1 study, Sprague-Dawley rats were randomly assigned to 4 groups. IPC (P) group animals received IPC by temporary thoracic aortic occlusion (AO) with a 2-F Fogarty arterial embolectomy catheter for 3 min. I/R injury (I/R) group animals were treated with blood withdrawal and temporary AO for 12 min, and shed blood reinfusion at the end of the procedures. (P+I/R) group animals received IPC, followed by 5 min reperfusion, and then I/R procedures for 12 min. Sham (S) group animals received anesthesia and underwent surgical preparation only. Neurological functions were evaluated, and lumbar segments were harvested for histopathological examination. To evaluate the role of autoregulation in IPC, spinal cord blood flow and tissue oxygenation were continuously monitored throughout the procedure duration. In the part 2 study, spinal cord ischemia rats was induced by occluding the thoracic descending aorta with a balloon catheter introduced through a femoral artery, accompanied by concomitant exsanguinations. Rats in the control group were given dimethyl sulfoxide (vehicle) before undergoing spinal cord ischemia/reperfusion injury. In the U0126-treated group, rats were pretreated with an inhibitor of ERK1/2, U0126, to inhibit ERK1/2 phosphorylation. The sham rats underwent aortic catheterization without occlusion. Parameters, including neurologic status, neuronal survival, inflammatory cell infiltration, and interleukin-1£] production in the spinal cords, were compared between groups.
Results: The Tarlov scores in the (I/R) group were significantly lower than those in the (S), (P), and (P+I/R) groups on days 1, 3, 5, and 7. The numbers of surviving motor neurons in the (S), (P), and (P+I/R) groups were significantly higher than those in the (I/R) group. The (P) group exhibited higher spinal cord blood flow and tissue oxygenation after reperfusion than the (S) group. The (P+I/R) group exhibited higher spinal cord blood flow and tissue oxygenation within the first 60 min after reperfusion than the (I/R) groups. In the part 2 study, early ERK1/2 phosphorylation was observed after injury in the control group, followed by abundant microglial accumulation in the infarct area and increased interleukin-1£] expression. In the U0126 group, U0126 treatment completely blocked ERK1/2 phosphorylation. Microglial activation and spinal cord interleukin-1£] levels were significantly reduced. Neuronal survival and functional performance were improved.
Conclusions: IPC ameliorates spinal cord I/R injury in rats, probably mediated by triggering spinal cord autoregulation and improving local spinal cord blood flow and tissue oxygenation. The ERK1/2 pathway may play a noxious role in spinal cord ischemia/reperfusion injury by participating in inflammatory reactions and cytokine production. According to our findings, these concepts may be the new therapeutic targets in patients requiring aortic surgery.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-1227111-093326
Date27 December 2011
CreatorsLiang, Cheng-Loong
ContributorsJulie Y.H. Chan, Han-Jung Chen, Aij-Lie Kwan, Samuel H.H. Chan, Alice Y.W. Chang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-1227111-093326
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.002 seconds