Return to search

Fabrication of ultrathin SiC film using grafted poly(methylsilane)

��-SiC is a semiconductor for high temperature devices, which exhibits several outstanding properties such as high thermal stability, good chemical stability and wide band gap. There is a possibility of fabricating a crack-free ultrathin SiC film on silicon wafers by pyrolysis of polymethylsilane (PMS) film.
This study looks into the possibility, as the first phase, to modify the surface of silicon and graft PMS onto the surface. A new technique reported in this thesis consists of a surface modification with trimethoxysilylpropene (TSP) followed by the surface attachment of dichloromethylsilane (DMS) in the presence of a platinum catalyst, which acts as the first unit for grafting PMS molecules by the sodium polycondensation of additional DMS monomers. The grafted PMS polymers would serve as the pyrolytic precursor to be converted into thin layers of SiC.
Surface analysis of these films on silicon wafers by X-ray photoelectron spectroscopy (XPS) indicated that the silicon surface was successfully modified with TSP, attached with DMS, and finally grafted with PMS. It was also confirmed by
powder X-ray diffraction (XRD) that PMS formed simultaneously in the bulk solution was converted into SiC by pyrolysis at temperatures above 1100��C under Ar atmosphere.
Extended studies showed that the PMS-derived coatings, formed in an Ar stream containing 1% H��� at 400��C, were significantly oxidized, and further heating to 700��C yielded a Si0��� layer with graphitic carbon. The intensity of the graphite peak decreased with an increase in the pyrolysis temperature. Based on these preliminary studies towards the second phase, i.e. the pyrolysis of PMS to SiC, the need for further research to eliminate the oxidation source(s) is strongly suggested. / Graduation date: 2001

Identiferoai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/33083
Date06 December 2000
CreatorsLertwiwattrakul, Wimol
ContributorsKimura, Shoichi
Source SetsOregon State University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0018 seconds