Return to search

Design, analysis, and validation of composite c-channel beams

A lightweight carbon fiber reinforced polymer (CFRP) c-channel beam was previously designed using analytical theory and finite element analysis and subsequently manufactured through a pultrusion process. Physical testing revealed the prototype did not meet the bending and torsional stiffness of the beam model. An investigation revealed that the manufactured prototype had lower fiber content than designed, compacted geometry, an altered ply layup, missing plies, and ply folds. Incorporating these changes into the beam model significantly improved model-experiment agreement.
Using what was learned from the initial prototype, several new beam designs were modeled that compare the cost per weight-savings of different composite materials. The results of these models show that fiberglass is not a viable alternative to CFRP when designing for equivalent stiffness. Standard modulus carbon was shown
to have slightly lower cost per-weight savings than intermediate modulus carbon, although intermediate modulus carbon saves more weight overall. Core materials, despite potential weight savings, were ruled out as they do not have the crush resistance to handle the likely clamp loads of any attaching bolts. Despite determining the ideal materials, the manufactured cost per weight-savings of the best CFRP beam design was about double the desired target. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from Oct. 5, 2012 - Oct. 5, 2014

Identiferoai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/34292
Date05 October 2014
CreatorsKoski, William C.
ContributorsParmigiani, John
Source SetsOregon State University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0028 seconds