Return to search

Fouling characteristics of a desalted crude oil

The fouling characteristics of a desalted crude oil were investigated in a systematic
investigation. There are two main parts in this study, the dry bulk tests (dehydrated crude
oil) and the wet bulk tests (to which desalter brine was added). Three barrels of desalted
crude oil provided by Amoco Oil Company were studied.
For the dry bulk tests, no brine was added to the crude oil. The effects of fluid
velocity and surface temperature on fouling were investigated. The higher the surface
temperature the greater the fouling was observed. Fouling decreased with an increase of
fluid velocity. Fluid velocity had a stronger effect on fouling at low surface temperatures
than at high surface temperatures. It was also observed that the fouling behavior of crude
oil depended on small difference in composition. The threshold surface temperatures for
the initiation of fouling were 400-450 °F (3.0 ft/sec), 525-550 °F (5.5 ft/sec), 550-600
°F (8.0 ft/sec) and about 600 °F (10.0 ft/sec) for Barrel No. 2 and Barrel No. 3. For
Barrel No. 1 however, the threshold surface temperatures were about 550 °F (3.0 ft/sec)
and 600 °F (5.5 ft/sec).
For the wet bulk tests, a certain amount desalter brine (weight percentage = 0.8%)
was added to the crude oil for each run. The effects of fluid velocity, surface temperature
and the presence of brine on fouling were investigated. Higher surface temperature
enhanced fouling considerably. Fouling was reduced as fluid velocity was increased. It
was shown that brine had a strong effect on fouling. No fouling occurred for velocities of
5.5 and 8.0 ft/sec at a surface temperature of 350 °F which was a condition for which an
aqueous phase was present and the salt remained in solution. Significant fouling occurred
for velocities of 5.5 and 8.0 ft/sec at a surface temperature operated at a low 400 °F (Tb =
300 °F) which was a condition for which the aqueous phase at the heat transfer surface was
dissolved or boiled to extinction and the salt was deposited on the heat transfer surface. / Graduation date: 1991

Identiferoai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/37956
Date24 August 1990
CreatorsLin, Dah-cheng
ContributorsKnudsen, James G.
Source SetsOregon State University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0016 seconds