Return to search

Proteolytic cleavage events in the maturation of HIV-1 reverse transcriptase

Each of the HIV-1 pol-encoded enzymes, protease (PR), reverse transcriptase (RT) and integrase (IN) are released during virion maturation and are active only as dimers. Of the three, only RT comprises subunits of different mass. RT in mature infectious virions is a heterodimer of 66 kDa and 51 kDa subunits, even though its gene encodes a 66 kDa protein. The RT p51 subunit is formed by HIV-1 PR-catalyzed cleavage of RT p66, resulting in the removal of a ribonuclease H (RNH) domain. Given the existence of completely active recombinant p66/66 RT homodimers and alternative RT oligomers in other retroviruses, the apparent need for p66/51 RT heterodimers in the HIV-1 virion is unclear. To determine why the generation of active viral RT requires three processing events, we introduced mutations in the p51-RNH and RT-IN protease cleavage sites of an infectious HIV-1 molecular clone. Mutation of the RT-IN cleavage site had no effect on the activity or proteolytic stability of the p98/51 RT product, although infectivity was severely attenuated. This result was similar to findings previously reported for the PR-RT cleavage site. Surprisingly, mutation of the internal p51-RNH cleavage site did not increase RT p66 content, but resulted in attenuated virus containing greatly decreased levels of RT that was primarily RT p51. We further identified a compensatory second-site mutation T477A, found to restore RT activity and processing to p66/51 RT when introduced in the background of p51-RNH cleavage site mutations. These studies demonstrate that cleavage of the internal p51-RNH junction, not the flanking N-terminal or C-terminal junctions is essential for proteolytic stability of functional RT during virion maturation. These findings further emphasize the importance of the RNH domain in regulating proteolytic generation of p66/51 RT. The overall need for the RT heterodimer is attributable to the generation of its subunits. Formation of the 51 kDa subunit or cleavage of the p51-RNH junction is essential for RT stability in the virion, whereas formation of the 66 kDa subunit is important for efficient viral replication.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-04052005-092418
Date28 April 2005
CreatorsAbram, Michael Elliott
ContributorsMichael A. Parniak, Ivet Bahar, Velpandi Ayyavoo, Ronald C. Montelaro, John Mellors
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-04052005-092418/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0024 seconds