Return to search

Towards An Optimal Core Optical Network Using Overflow Channels

This dissertation is based on a traditional circuit switched core WDM network that is supplemented by a pool of wavelengths that carry optical burst switched overflow data. These overflow channels function to absorb channel overflows from traditional circuit switched networks and they also provide wavelengths for newer, high bandwidth applications. The channel overflows that appear at the overflow layer as optical bursts are either carried over a permanently configured, primary light path, or over a burst-switched, best-effort path while traversing the core network.
At every successive hop along the best effort path, the optical bursts will attempt to enter a primary light path to its destination. Thus, each node in the network is a Hybrid Node that will provide entry for optical bursts to hybrid path that is made of a point to point, pre-provisioned light path or a burst switched path. The dissertations main outcome is to determine the cost optimality of a Hybrid Route, to analyze cost-effectiveness of a Hybrid Node and compare it to a route and a node performing non-hybrid operation, respectively. Finally, an example network that consists of several Hybrid Routes and Hybrid Nodes is analyzed for its cost-effectiveness.
Cost-effectiveness and optimality of a Hybrid Route is tested for its dependency on the mean and variance of channel demands offered to the route, the number of sources sharing the route, and the relative cost of a primary and overflow path called path cost ratio. An optimality condition that relates the effect of traffic statistics to the path cost ratio is analytically derived and tested. Cost-effectiveness of a Hybrid Node is compared among different switching fabric architecture that is used to construct the Hybrid Node. Broadcast-Select, Benes and Clos architectures are each considered with different degrees of chip integration. An example Hybrid Network that consists of several Hybrid Routes and Hybrid Nodes is found to be cost-effective and dependent of the ratio of switching to transport costs.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-05012009-100200
Date12 May 2009
CreatorsMenon, Pratibha
ContributorsDr.Abdullah Konak, Dr.Taieb Znati, Dr. Richard. A. Thompson, Dr.Abdelmounaam Rezgui, Dr.David Tipper, Dr.Jayant Rajgopal
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-05012009-100200/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0026 seconds