Return to search

MEDIATION OF CHEMOTHERAPY-INDUCED APOPTOSIS BY THE LYSOSOMAL PROTEASE CATHEPSIN D

One of the most common hallmarks of cancer is dysregulation of cellular apoptotic processes. A comprehensive knowledge of the underlying mechanisms of the apoptotic machinery is vital for the identification of new drug targets and the development of innovative agents that stimulate the cell death process in cancer cells. Studies have shown that the lysosomal protease cathepsin D is important in the extrinsic apoptotic pathway stimulated by the death receptor ligands for TNFR1 and FAS, as well as by oxidative stress and the protein kinase C inhibitor staurosporine. To date, the role of cathepsin D in the chemotherapy-induced apoptotic pathway has not been characterized. This project examined the role of the lysosomal protease cathepsin D in chemotherapy-induced apoptosis of HeLa and U937 cells. The data demonstrated that following stimulation of U937 cells with the chemotherapy drug VP-16, cathepsin D was released into the cytosol approximately 4 hours after drug treatment. This release was selective for cathepsin D, as cathepsin B and the lysosomal markers LAMP and รข-hexosaminidase were not released into the cytosol following VP-16 treatment. Inhibitors of caspases and
cathepsin D had no effect on cathepsin D release, demonstrating that cathepsin D release occurred independently of caspase and cathepsin D activities. Downregulation of cathepsin D expression in U937 and Hela cells using siRNA was found to inhibit cell death resulting from a variety of stimuli, including death receptor ligands, oxidative stress, PKC inhibitors, and importantly, chemotherapy drugs. In addition, U937 and HeLa cells expressing cathepsin D siRNA exhibited delayed cytochrome c release and caspase-3 activation following VP-16 treatment. Moreover, isolated mitochondria from wild-type U937 cells released cytochrome c in response to cytosolic extracts that were treated with cathepsin D, suggesting that cathepsin D acts on a cytosolic factor to induce cytochrome c release. Inhibition of caspases had no impact on cytochrome c release provoked by cathepsin D-cleaved cytosolic extract, demonstrating that caspases are not mediators of cathepsin D-induced cytochrome c release. Taken together, these results demonstrate that cathepsin D is an important component of the apoptotic pathway and that it acts via an intermediary cytosolic factor to promote cytochrome c release and caspase activation during chemotherapy-induced apoptosis.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-06012005-221616
Date25 July 2005
CreatorsEmert-Sedlak, Lori A
ContributorsDr. Daniel E. Johnson, Dr. Don DeFranco, Dr. Lin Zhang, Dr. Jack Yalowich, Dr. Xiaoming Yin
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-06012005-221616/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0019 seconds