Return to search

Analysis of the ANSI/RESNA Wheelchair Standards: A Comparison Study of Five Different Types of Electric Powered Wheelchairs

The number of individuals using electric powered wheelchairs (EPWs) is increasing every year. Advances in technology have led to the design of EPWs that are more complex and can perform multiple functions. The ANSI/RESNA wheelchair standards consist of a battery of tests that are designed to evaluate the safety and performance of both manual and power wheelchairs. However, there is a deficit of information available to the general public on the performance of wheelchairs on these tests. The purpose of this study was to compare the results of standards testing on five different types of EPWs. The value and intentions of each section of the standard were also reviewed and suggestions were made for possible improvements.
A total of fifteen EPWs (three of each type) were tested using the following sections: static stability, dynamic stability, effectiveness of brakes, energy consumption, overall dimensions, speed and acceleration, seating dimensions, static, impact, and fatigue testing, climatic testing, obstacle climbing ability, and power and control systems. Statistical analysis was performed on the relevant sections. Significant differences were found between the different types of wheelchairs with respect to static stability, dynamic stability, braking distance, theoretical range, and obstacle climbing ability. The EPWs with the highest velocity and accelerations were found to be the most dynamically unstable and have the longest braking distances. Dynamic stability and braking distance were also found to be directly related to the slope of the test surface. It is apparent from the results that EPWs can differ in both performance characteristics and safety.
Evaluation of the wheelchair standards also illustrated the need to continually revise the standards to keep pace with new technology. Stability, fatigue strength, and control system testing are three of the sections that will need to be adapted to help evaluate the next generation of EPWs.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-08052002-154543
Date05 September 2002
CreatorsRentschler, Andrew J
ContributorsDr. Rory Cooper, Dr. Songfeng Guo, Dr. Michael Boninger
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu:80/ETD/available/etd-08052002-154543/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0024 seconds