Return to search

Development of a Biomechanical Testing Platform for the Study of the Human Knee Joint

The knee joint is a sophisticated biological mechanism involved in locomotion at the lower extremity. Despite its apparently simple motion during gait, the knee actually features complex 6-DOF kinematic patterns and 3D force distributions, stemming from the biomechanical interdependence of its component tissues, that become upset during injury and are difficult to restore with existing clinical treatments. In the interest of studying and characterizing the mechanics of the knee, a robotic/UFS testing system, capable of recording the complexity of joint kinematics and of the forces transmitted by the soft-tissues in response to meaningful loading conditions, has been used by various laboratories to obtain quantitative data with which to evaluate injury mechanisms, prevention, treatment and rehabilitation. This system has been successfully used to quantify the mechanical behavior of ligaments and their reconstruction grafts, menisci and cartilage, in response to a variety of experimental conditions. The effort of this work is to modernize the robotic/UFS testing system by upgrading its software control to manage more general and realistic loading conditions. The resulting software system, named the biomechanical testing platform, is expected to ultimately integrate the operation of the robotic/UFS testing system with that of other valuable experimental and computational approaches aimed at the study of the human knee joint.
The biomechanical testing platform is designed with the use of state-of-the-art development technologies and comprises the mathematical formulations, control algorithms, and data abstractions specialized to a clinically relevant description of the kinematics and kinetics of the human knee. The system accommodates logical choices of hardware, motion description, iterative algorithms, as well as the use of automatic regression verifications. The biomechanical testing platform is demonstrated with a homologous experiment to that of the robotic/UFS testing system: the measurement of in situ forces in the ACL of a cadaver specimen, in response to anterior-posterior (translation) and varus-valgus (rotation) tibial loads. Furthermore, an application with concurrent interoperability between the robotic/UFS testing system and a computational analysis method is proposed.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-11172003-121731
Date02 February 2004
CreatorsGil, Jorge Enrique
ContributorsRichard E Debski, Ph.D., Patrick McMahon, Savio L-Y. Woo, Ph.D., D.Sc
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-11172003-121731/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0024 seconds