Return to search

Effects of Adaptation in a Somatosensory Thalamocortical Circuit

In the mammalian brain, thalamocortical circuits perform the initial stage of processing before information is sent to higher levels of the cerebral cortex. Substantial changes in receptive field properties are produced in the thalamocortical response transformation. In the whisker-to-barrel thalamocortical pathway, the response magnitude of barrel excitatory cells is sensitive to the velocity of whisker deflections, whereas in the thalamus, velocity is only encoded by firing synchrony. The behavior of this circuit can be captured in a model which contains a window of opportunity for thalamic firing synchrony to engage intra-barrel recurrent excitation before being 'damped' by slightly delayed, but strong, local feedforward inhibition. Some remaining aspects of the model that require investigation are: (1) how does adaptation with ongoing and repetitive sensory stimulation affect processing in this circuit and (2) what are the rules governing intra-barrel interactions. By examining sensory processing in thalamic barreloids and cortical barrels, before and after adaptation with repetitive high-frequency whisker stimulation, I have determined that adaptation modifies the operations of the thalamocortical circuit without fundamentally changing it. In the non-adapted state, higher velocities produce larger responses in barrel cells than lower velocities. Similarly, in the adapted barrel, putative excitatory and inhibitory neurons can respond with temporal fidelity to high-frequency whisker deflections if they are of sufficient velocity. Additionally, before and after adaptation, relative to putative excitatory cells, inhibitory cells produce larger responses and are more broadly-tuned for stimulus parameters (e.g., the angle of whisker deflection). In barrel excitatory cells, adaptation is angularly-nonspecific; that is, response suppression is not specific to the angle of the adapting stimulus. The angular tuning of barrel excitatory cells is sharpened and the original angular preference is maintained. This is consistent with intra-barrel interactions being angularly-nonspecific. The maintenance of the original angular preference also suggests that the same thalamocortical inputs determine angular tuning before and after adaptation. In summary, the present findings suggest that adaptation narrows the window of opportunity for synchronous thalamic inputs to engage recurrent excitation so that it can withstand strong, local inhibition. These results from the whisker-to-barrel thalamocortical response transformation are likely to have parallels in other systems.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-12082005-143022
Date20 December 2005
CreatorsKhatri, Vivek
ContributorsNathaniel N. Urban, Pete W. Land, Asaf Keller, Daniel J. Simons, Allen L. Humphrey
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-12082005-143022/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.002 seconds