Return to search

Dynamics of protein-drug interactions inferred from structural ensembles and physics-based models

The conformational flexibility of target proteins is a major challenge in understanding and modeling protein-drug interactions. A fundamental issue, yet to be clarified, is whether the observed conformational changes are controlled by the protein, or induced by the inhibitor. While the concept of induced fit has been widely adopted for describing the structural changes that accompany ligand binding, there is growing evidence in support of the dominance of proteins intrinsic dynamics, which has been evolutionarily optimized to accommodate its functional interactions. The wealth of structural data for target proteins in the presence of different ligands now permits us to make a critical assessment of the balance between these two effects in selecting the bound forms. We focused on three widely studied drug targets, HIV-1 reverse transcriptase, p38 MAP kinase, and cyclin-dependent kinase 2. A total of 292 structures determined for these enzymes in the presence of different inhibitors as well as unbound form permitted us to perform an extensive comparative analysis of the conformational space accessed upon ligand binding, and its relation to the intrinsic dynamics prior to ligand binding as predicted by elastic network model analysis. Further, we analyzed NMR ensembles of ubiquitin and calmodulin representing their microseconds range solution dynamics. Our results show that the ligand selects the conformer that best matches its structural and dynamic properties amongst the conformers intrinsically accessible to the protein in the unliganded form. The results suggest that simple but robust rules encoded in the protein structure play a dominant role in pre-defining the mechanisms of ligand binding, which may be advantageously exploited in designing inhibitors. We apply these lessons to the study of MAP kinase phosphatases (MKPs), which are therapeutically relevant but challenging signaling enzymes. Our study provides insights into the interactions and selectivity of MKP inhibitors and shows how an allosteric inhibition mechanism holds for a recently discovered inhibitor of MKP-3. We also provide evidence for the functional significance of the structure-encoded dynamics of rhodopsin and nicotinic acetylcholine receptor, members of two membrane proteins classes serving as targets for more than 40% of all current FDA approved drugs.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-12132009-205300
Date06 January 2010
CreatorsBakan, Ahmet
ContributorsChakra Chennubhotla, Ivet Bahar, Xiang-Qun Xie, Christopher J. Langmead, John S. Lazo
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-12132009-205300/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0024 seconds