Return to search

Magnetic spin dynamics in iron phthalocyanine thin films

<p>This thesis aims to build upon the previous work done on the magnetic relaxation of iron(II) phthalocyanine (FePc) thin films by exploring the dynamic aspects of coercive fields in order to determine whether FePc can be classified as a low-dimensional material known as a single chain magnet. In thin films, the chain length is controlled by deposition temperature and therefore systematic studies of the chain-length dependent properties can be made. Hysteresis loops of FePc thin-films with five different chain lengths ranging from approx. 30 nm to 300 nm were measured at a range of sweep speeds from 10.4 mT/s to 1.07 mT/s. Each measurement was repeated at 5 different temperatures in the interval from 2.5 K to 3.8 K, where hysteresis was observed. Significant reductions in coercivity with slower sweep speeds reveal the non-equilibrium behavior of the magnetic states. Mean-field theory based on one-dimensional chains within a Glauber-Ising model suggests a power law behavior of coercivity with sweep rate. Indeed all experimental data is consistent with that behavior. The critical exponent varies from 0.521 to 0.153 for short to long chains. Given the limited observational window, coercivity due to inter-chain coupling cannot fully be ruled out, yet a large dynamic response in the coercivity supports the notion of a single chain magnet.

Identiferoai:union.ndltd.org:PROQUEST/oai:pqdtoai.proquest.com:10167519
Date03 December 2016
CreatorsByrne, Matthew P.
PublisherCalifornia State University, Long Beach
Source SetsProQuest.com
LanguageEnglish
Detected LanguageEnglish
Typethesis

Page generated in 0.0024 seconds