Return to search

Anomalies, Entanglement and Boundary Geometry in Conformal Field Theory

<p> A conformal field theory embedded in a curved spacetime background can be characterized by the trace anomaly coefficients of the stress tensor. We first derive general vacuum stress tensors of even-dimensional conformal field theories using Weyl anomalies. We then consider some aspects of conformal field theory in space-time dimensions higher than two with a codimension-one boundary. We discuss how boundary effect plays an important role in the study of quantum entanglement. We also obtain universal relationships between boundary trace anomalies and stress-tensor correlation functions near the boundary. A non-supersymmetric graphene-like conformal field theory with a four-dimensional bulk photon and a three-dimensional boundary electron is found to have two boundary central charges that depend on an exactly marginal direction, namely the gauge coupling.</p><p>

Identiferoai:union.ndltd.org:PROQUEST/oai:pqdtoai.proquest.com:10931391
Date29 November 2018
CreatorsHuang, Kuo-Wei
PublisherState University of New York at Stony Brook
Source SetsProQuest.com
LanguageEnglish
Detected LanguageEnglish
Typethesis

Page generated in 0.0018 seconds