Estudio de la circunferencia desde la geometría sintética y la geometría analítica, mediado por el geogebra, con estudiantes de quinto grado de educación secundaria

La presente tesis tiene como objetivo analizar los resultados que se tiene en los aprendizajes
al abordar un problema sobre circunferencia desde los cuadros de la geometría sintética y
geometría analítica. Se espera que el tránsito entre estos dos cuadros favorezca la
comprensión del objeto. Para el estudio se ha tomado como base la Teoria de Juego de
cuadros, en donde se describen fases por las cuales los estudiantes deben transitar para que
las interacciones entre cuadros permitan el progreso de los conocimientos. De otro lado,
como referencial metodológico se han considerado aspectos del Estudio de Casos.
Así, nos planteamos la siguiente pregunta de investigación: ¿Qué resultados se tendrá en los
aprendizajes de los estudiantes el abordar problemas sobre circunferencia desde la geometría
sintética y también desde la geometría analítica, y de qué manera el uso del GeoGebra
contribuirá a que los estudiantes establezcan conexiones entre estos dos cuadros de la
matemática?
Con esta investigación se logró identificar una actividad sobre circunferencia que podía ser
abordada desde la geometría sintética y también desde la geometría analítica. En cada uno de
dichos cuadros, se tendría que hacer uso de procedimientos propios particulares; así, mientras
que desde la geometría sin coordenadas prevalecerían las construcciones exactas, desde la
geometría analítica, la solución del problema se basaría en resolver sistemas de ecuaciones.
Así mismo, el empleo del software GeoGebra permitió que los estudiantes pudieran
comprobar los resultados obtenidos en ambos cuadros, logrando que se centraran en las ideas
centrales y no se perdieran con los cálculos.
De otro lado, también se confirmaron las fases propuestas en la teoría de juego de cuadros
durante el proceso de cambio de cuadros. Así, se produjeron desequilibrios al no tener la
seguridad de resolver un problema, y luego se recurrió a la ayuda de otro cuadro,
produciendose un reequilibrio de lo aprendido; dicha acción que realizan produce una
conexión entre cuadros llamado también juego de cuadros que le ayudan a tener seguridad en
resolver problemas de geometría.
Se puede concluir que esta investigación contribuyó a que los estudiantes establecieran
conexiones entre los cuadros de la geometría sintética y la geometría analítica. / This thesis aims to analyze the results you have in learning to address a problem about boxes
circumference from synthetic geometry and analytic geometry. It is expected that the
transition between these two pictures fosters an understanding of the object. For the study has
been based on game theory frame, where phases through which students must travel to
interactions between frames allow the progress of knowledge is described. On the other hand,
as methodological reference they have been considered aspects of the case study.
So, we have the following research question: What results will have on student learning the
circumference address problems from synthetic geometry and analytic geometry from, and
how the use of GeoGebra help students establish connections between these two pictures of
mathematics?
With this research we were able to identify an activity on circumference it could be
approached from synthetic geometry and also from analytical geometry. In each of these
tables, it would have to make use of particular own procedures; So while no coordinate
geometry from the exact construction prevail from analytic geometry, the solution would be
based on solving systems of equations.
Likewise, the use of GeoGebra software enabled the students to check the results obtained in
both boxes, getting them to focus on the central ideas and not be lost with the calculations.
On the other hand, the stages proposed in the theory of game tables during the process of
changing tables are also confirmed. So, there were imbalances to be sure not solve a problem,
then enlisted the help of another box, resulting in a rebalancing of learning; performing such
action produces a connection between tables also called set of charts that help you be
confident in solving geometry problems.
It can be concluded that this research helped students establish connections between the
frames of synthetic geometry and analytic geometry

Identiferoai:union.ndltd.org:PUCP/oai:tesis.pucp.edu.pe:20.500.12404/6756
Date20 April 2016
CreatorsEchevarría Anaya, Julio Antonio
ContributorsGaita Iparraguirre, Rosa Cecilia
PublisherPontificia Universidad Católica del Perú, PE
Source SetsPontificia Universidad Católica del Perú
LanguageSpanish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/masterThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess, http://creativecommons.org/licenses/by-nc-nd/2.5/pe/

Page generated in 0.0024 seconds