Exploration of customer churn routes using machine learning probabilistic models

The ongoing processes of globalization and deregulation are changing the competitive framework in the majority of economic sectors. The appearance of new competitors and technologies entails a sharp increase in competition and a growing preoccupation among service providing companies with creating stronger bonds with customers. Many of these companies are shifting resources away from the goal of capturing new customers and are instead focusing on retaining existing ones. In this context, anticipating the customer¿s intention to abandon, a phenomenon also known as churn, and facilitating the launch of retention-focused actions represent clear elements of competitive advantage.
Data mining, as applied to market surveyed information, can provide assistance to churn management processes. In this thesis, we mine real market data for churn analysis, placing a strong emphasis on the applicability and interpretability of the results. Statistical Machine Learning models for simultaneous data clustering and visualization lay the foundations for the analyses, which yield an interpretable segmentation of the surveyed markets. To achieve interpretability, much attention is paid to the intuitive visualization of the experimental results. Given that the modelling techniques under consideration are nonlinear in nature, this represents a non-trivial challenge. Newly developed techniques for data visualization in nonlinear latent models are presented. They are inspired in geographical representation methods and suited to both static and dynamic data representation.

Identiferoai:union.ndltd.org:TDX_UPC/oai:www.tdx.cat:10803/144660
Date10 April 2014
CreatorsGarcia Gomez, David
ContributorsGavaldà Mestre, Ricard, Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics
PublisherUniversitat Politècnica de Catalunya
Source SetsUniversitat Politècnica de Catalunya
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Format159 p., application/pdf
SourceTDX (Tesis Doctorals en Xarxa)
Rightsinfo:eu-repo/semantics/openAccess, L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/3.0/es/

Page generated in 0.0136 seconds