Return to search

Functional Norm Regularization for Margin-Based Ranking on Temporal Data

Quantifying the properties of interest is an important problem in many domains, e.g., assessing the condition of a patient, estimating the risk of an investment or relevance of the search result. However, the properties of interest are often latent and hard to assess directly, making it difficult to obtain classification or regression labels, which are needed to learn a predictive models from observable features. In such cases, it is typically much easier to obtain relative comparison of two instances, i.e. to assess which one is more intense (with respect to the property of interest). One framework able to learn from such kind of supervised information is ranking SVM, and it will make a basis of our approach. Applications in bio-medical datasets typically have specific additional challenges. First, and the major one, is the limited amount of data examples, due to an expensive measuring technology, and/or infrequency of conditions of interest. Such limited number of examples makes both identification of patterns/models and their validation less useful and reliable. Repeated samples from the same subject are collected on multiple occasions over time, which breaks IID sample assumption and introduces dependency structure that needs to be taken into account more appropriately. Also, feature vectors are highdimensional, and typically of much higher cardinality than the number of samples, making models less useful and their learning less efficient. Hypothesis of this dissertation is that use of the functional norm regularization can help alleviating mentioned challenges, by improving generalization abilities and/or learning efficiency of predictive models, in this case specifically of the approaches based on the ranking SVM framework. The temporal nature of data was addressed with loss that fosters temporal smoothness of functional mapping, thus accounting for assumption that temporally proximate samples are more correlated. Large number of feature variables was handled using the sparsity inducing L1 norm, such that most of the features have zero effect in learned functional mapping. Proposed sparse (temporal) ranking objective is convex but non-differentiable, therefore smooth dual form is derived, taking the form of quadratic function with box constraints, which allows efficient optimization. For the case where there are multiple similar tasks, joint learning approach based on matrix norm regularization, using trace norm L* and sparse row L21 norm was also proposed. Alternate minimization with proximal optimization algorithm was developed to solve the mentioned multi-task objective. Generalization potentials of the proposed high-dimensional and multi-task ranking formulations were assessed in series of evaluations on synthetically generated and real datasets. The high-dimensional approach was applied to disease severity score learning from gene expression data in human influenza cases, and compared against several alternative approaches. Application resulted in scoring function with improved predictive performance, as measured by fraction of correctly ordered testing pairs, and a set of selected features of high robustness, according to three similarity measures. The multi-task approach was applied to three human viral infection problems, and for learning the exam scores in Math and English. Proposed formulation with mixed matrix norm was overall more accurate than formulations with single norm regularization. / Computer and Information Science

Identiferoai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/2465
Date January 2018
CreatorsStojkovic, Ivan
ContributorsObradovic, Zoran, Kovacevic, Branko, Vucetic, Slobodan, Zhang, Kai, Djurovic, Zeljko, Sapienza, Carmen
PublisherTemple University. Libraries
Source SetsTemple University
LanguageEnglish
Detected LanguageEnglish
TypeThesis/Dissertation, Text
Format90 pages
RightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/
Relationhttp://dx.doi.org/10.34944/dspace/2447, Theses and Dissertations

Page generated in 0.0025 seconds