Return to search

EXTRACELLULAR VESICLES IN THE VASCULATURE: NOVEL MEANS OF COMMUNICATION DURING VASCULAR INSULT

Endothelial dysfunction, present in most cardiovascular disease, results in up-regulation of inflammatory adhesion molecules/cytokines, increases in vascular permeability, and decreased vasoprotective factors leading to vascular dysfunction. A novel means of communication between almost all cells are small vesicles containing biologically active proteins, nucleic acids, and lipids known as extracellular vesicles. Despite the advances in cardiovascular biology, the role of extracellular vesicles between endothelial cells and cells of vascular wall are underexplored. Therefore, we hypothesized that endothelial activation results in the release of pro-inflammatory vesicles that initiate inflammatory remodeling of vascular smooth muscle cells of the aorta. Extracellular vesicles were released from both endothelial cells and vascular smooth muscle cells with characteristic size, shape, and content. However, serum-free collection in endothelial cells resulted in endothelial activation of cell in culture and resulted in altered function in vascular smooth muscle cells, characterized by increased monocyte adhesion, altered protein synthesis/signal transduction, and signs of pro-senescent features. These effects were not recapitulated in any combination of endothelial-vascular smooth muscle cell extracellular vesicle communication. Unbiased mass spectroscopy of vascular smooth muscle cell treated with serum-free endothelial vesicles identified several proteins significantly up- regulated, including high mobility group box 1 and 2. Pharmacologic and genetic inhibition of these molecules significantly attenuated NF-kB activation, VCAM-1 expression, and monocyte adhesion. In summation, we suggest a new axis through which endothelial activation releases vesicles that skew the function of vascular smooth muscle cells to phenotype characterized by inflammatory properties through up-regulation of high mobility group box proteins 1 and 2. This highlights the importance of extracellular vesicles as a novel communication method between cells of the vasculature and how alterations in the host cell function may change the function of these vesicles. / Biomedical Sciences

Identiferoai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/284
Date January 2020
CreatorsBoyer, Michael, 0000-0001-7080-8767
ContributorsRizzo, Victor, Eguchi, Satoru, Touyz, Rhian M., Kishore, Raj, Autieri, Michael V., Scalia, Rosario
PublisherTemple University. Libraries
Source SetsTemple University
LanguageEnglish
Detected LanguageEnglish
TypeThesis/Dissertation, Text
Format208 pages
RightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/
Relationhttp://dx.doi.org/10.34944/dspace/268, Theses and Dissertations

Page generated in 0.0175 seconds