Return to search

Novel Regulatory Mechanisms of D1 Dopamine Receptor Maturation and Internalization

Novel Regulatory Mechanisms of D1 Dopamine Receptor Maturation and Internalization


Michael Ming Chuen Kong
Degree of Doctor of Philosophy, 2008
Department of Pharmacology
University of Toronto



ABSTRACT

Dopamine is the most abundant catecholamine neurotransmitter in the mammalian brain and controls various physiological processes. The D1 dopamine receptor (D1DR) is the predominant dopamine receptor in the brain and traditionally couples to stimulatory G proteins, such as Gs, to activate adenylyl cyclase and generate cAMP.
Although the trafficking itinerary of ER/Golgi maturation, agonist-induced internalization, and recycling/degradation are features common to many G protein-coupled receptors (GPCRs), the molecular regulation of these individual processes for the D1DR is not fully elucidated. Many GPCRs have been shown to form homo-oligomers; the work presented in this thesis explores how multimerization of D1DR has a role in regulating how these receptors are trafficked to the plasma membrane. In addition, the regulation of D1DR internalization is investigated in the context of emerging evidence highlighting the importance of lipid rafts.
Using strategically designed point mutations of the D1DR, specific receptor mutants were found to intracellularly sequester the wild-type receptor by oligomerization. This level of scrutiny by the quality control machinery in the cell could be circumvented by treatment with cell permeable dopaminergic agonists, but not antagonists or inverse agonists. This finding suggests that specific conformational requirements must be achieved before full maturation and anterograde trafficking of the D1DR can proceed. Furthermore, it was determined that cell surface bound D1DRs could internalize through a novel clathrin independent pathway that required binding to the scaffolding protein, caveolin-1. This interaction with caveolin-1 was identified in whole rat brain and was found to require a putative caveolin binding motif in transmembrane domain 7. Palmitoylation of D1DR was found to regulate the rate of agonist-induced caveolae mediated internalization. Finally, we determined that the integrity of caveolae was important in regulating cAMP signaling through D1DR.
These findings provide novel insight into the trafficking requirements of newly synthesized D1DRs as well as alternative mechanisms of regulation of receptors after agonist activation. The oligomerization of GPCRs and the localization of GPCRs in lipid rafts represent two emerging concepts important to many aspects of GPCR function. Future work aimed at integrating these overlapping processes will further our understanding of this important group of cell surface receptors.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/11114
Date28 July 2008
CreatorsKong, Michael M. C.
ContributorsGeorge, Susan, O'Dowd, Brian F.
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis
Format10763915 bytes, application/pdf

Page generated in 0.0026 seconds