Return to search

Mouse Medial-prefrontal Cortex Involvement in Trace Fear Memory during Wakefulness and Sleep

This thesis represents a culmination of work which seeks to examine the prelimbic and anterior cingulate cortex (ACC) during trace fear memory across sleep and wakefulness states. In order to accomplish this task, a technical platform needed to be developed. Accordingly, the first chapter demonstrates that fear behavior can recorded utilizing neck electromyography (EMG). The second chapter examines the role of the ACC in trace fear memory, discovering that many neurons have premotor activity related to freezing behavior. Additionally, auditory-evoked potentials in the ACC demonstrate learning curves which match learning curves of fear. We suggest that the ACC is involved in affective-motor integration. The third chapter examines how genetic enhancement of trace fear learning, with calcium/calmodulin-dependent protein kinase IV (CaMKIV) over-expressed mice, can influence electro-cortical potentials during wakefulness, learning and sleep. We found that CaMKIV potentiates electro-cortical brain waves during learning and sleep. In particular 4-7.5Hz rhythms were potentiated in CaMKIV over-expressed mice during learning, and are likely to be localized to regions of the prelimbic cortex. Taken together the results of this thesis demonstrate that the trace fear memory paradigm engages the ACC and prelimbic regions, as evidenced at the single cell and cortical field potential level, for sensory-affective and premotor functions related to anticipating painful stimulation. CaMKIV appears to be a protein which modulates learning and electro-cortical potentials and may be a potential target for sleep-dependent memory consolidation in the prefrontal cortex.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/26239
Date17 February 2011
CreatorsSteenland, Hendrik
ContributorsZhuo, Min
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0021 seconds