Return to search

Identifying Targets of ERA1 Involved in Plant Development and Abiotic Stress Signaling

In Arabidopsis thaliana (Arabidopsis), by screening for the inability to germinate on low concentrations of exogenous abscisic acid (ABA), loss-of-function mutations in the β-subunit of a protein farnesyltransferase (FTase) were identified (Cutler et al., 1996). Designated era1-2, these mutants are pleiotropic and show a hypersensitive ABA response at the level of germination and stomatal closure, thereby conferring drought resistance, besides having particular developmental phenotypes (Pei et al., 1998; Bonetta et al., 2000). Although a number of proteins have been shown to be farnesylated in plants, which has provided some insight into how farnesylation regulates various processes, there is still no clear understanding of how loss of farnesylation can confer ABA hypersensitivity, for example. The simplest interpretation is that farnesylation acts as a negative regulator of ABA signal transduction.
The primary goal of this thesis is to carry out several reverse genetic screens using a Arabidopsis homozygous T-DNA knockout collection to discover potential targets of farnesylation as well as to determine the overall function of these farnesylated targets in plant growth and development. This included screening for morphological changes related to era1-2, altered responses to ABA at the level of germination, and altered drought responses. In total, 15 unique mutants were identified from the aforementioned reverse genetic screens. A knockout in the gene At3g30180 became particularly interesting for further study since it exhibited several phenotypes that resemble era1-2, including ABA hypersensitivity in germination, drought resistance, protruding carpels, reduced fertility, and round and broadened leaves. At3g30180, otherwise known as CYP85A2, is a cytochrome P450 that mediates the final step in the biosynthesis of brassinolide (BL), a brassinosteroid (Kim et al., 2005). At3g30180 was also identified through a bioinformatic screen (Brady and Provart, 2009; Usadel et al., 2009). Overall, ERA1 positively regulates CYP85A2 function through farnesylation, and therefore BL production, which negatively regulates ABA signaling.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/32036
Date18 January 2012
CreatorsNorthey, Julian
ContributorsMcCourt, Peter
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds