Return to search

Role of Epithelium-specific ETS Transcription Factor-1 in Airway Epithelial Regeneration

Human epithelium-specific ETS transcription factor-1 (ESE-1), which is also known as E74-like factor-3 (Elf3) in mice, is strongly expressed in lung during fetal development and in certain lung cancers. The primary goal of the work presented in this thesis was to investigate whether ESE-1 is involved in regeneration of the injured lung epithelium by administering naphthalene to both wild-type (Elf3 +/+) and Elf3-deficient (Elf3 -/-) mice. However, optimal conditions for proper utilization of the naphthalene-induced lung injury model must first be established. Therefore, dose-response studies were initially conducted by administering three different doses of naphthalene to both male and female mice, as described in chapter 2. Although it is shown that the extent of naphthalene-induced Clara cell injury is dose-dependent in both male and female mice, female mice are more sensitive to naphthalene-induced injury than male mice independent of the dose. Furthermore, it is also demonstrated that these gender-dependent differences in naphthalene injury can subsequently influence downstream lung repair kinetics. In light of these findings, lung regeneration was examined in both sexes of both Elf3 +/+ and Elf3 -/- mice. As reported in chapter 3, the kinetics of bronchiolar epithelial cell proliferation and differentiation is delayed considerably in Elf3 -/- mice following naphthalene injury. Moreover, expression of transforming growth factor-beta type II receptor, which is a well-known transcriptional target gene of ESE-1 and is involved in the induction of epithelial cell differentiation, is significantly lower in the bronchiolar airway epithelium of Elf3 -/- mice as compared to Elf3 +/+ mice under steady-state conditions and during repair of naphthalene-induced damage. Collectively, these findings occur to a similar extent in both sexes of both Elf3 +/+ and Elf3 -/- mice, and suggest that ESE-1 plays an important role in regulating the kinetics of airway epithelial regeneration after acute lung injury.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/32316
Date26 March 2012
CreatorsOliver, Jordan
ContributorsHu, Jim
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0018 seconds