Return to search

Growth and Characterization of ZnSe and ZnTe Alloy Nanowires

The objective of this thesis is to explore the synthesis and characterization of high quality binary ZnTe nanowires with great potential for development of optoelectronic devices including high efficiency photovoltaic cells for energy conversion and high sensitivity photodetectors for green fluorescent protein bioimaging at single molecule level.
To systematically explore the fabrication process for high quality nanowires, a chemical vapour deposition system was built for nanowire growth. Computational fluid dynamics simulations were used to optimize the reactor and growth parameters.
The simulations were validated by experimental measurements. Room temperature photoluminescence measurements showed that high crystal quality with very low defects by single step growth was achieved. This single step growth technique makes a great improvement compared to the reported growth followed by annealing, which achieved equivalent crystal quality. This simplification could be of use in large scale synthesis of nanowires.
The simulation results also showed that reactant species concentration is a key factor influencing the growth. A metal-organic chemical vapour deposition system was thus built to independently control reactant concentrations for ZnTe nanowire growth.
Temperature-dependent photoluminescence measurements of as-grown ZnTe nanowires showed a strong near band-edge emission. In addition, a deep level oxygen-related band was observed for the first time. From the detailed analysis of thermal quenching of the photoluminescence, it was shown that the deep level emission was partially from the intermediate band of the material. This is of great importance due to the theoretical absorption efficiency that is as high as 63% for intermediate band materials, which is more than two times of that of current single junction concentrators, and few materials possessing this property.
Individual ZnTe nanowires, grown after optimization, were patterned and contacted, and their conductivity and photoconductivity were measured at room temperature. A single ZnTe nanowire serving as a photodetector was shown to have the highest reported visible responsivity of 360 A/W (at 530 nm), and a gain of 8,640 (at 3 V bias). The responsivity is roughly 18 times higher than that of silicon avalanche photodiodes. This demonstrates that ZnTe nanowires are strong candidates for single photon detection.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/33854
Date06 December 2012
CreatorsLi, Zhong
ContributorsRuda, Harry E.
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0025 seconds