Return to search

Quantitative Behavioral Analysis of Thermal Nociception in Caenorhabditis elegans: Investigation of Neural Substrates Spatially Mediating the Noxious Response, and the Effects of Pharmacological Perturbations

The nematode Caenorhabditis elegans possesses a relatively simple nervous system of only 302 neurons, but is able to perform an impressive range of complex behaviors. This dissertation aims to understand the neurobiology of behavior by quantifying, at the systems-level, the sensorimotor response to carefully controlled stimuli. Through neuronal or genetic perturbations to the system, we can begin to uncouple the behavior from the underlying circuitry. The behavior studied here is thermal nociception, an escape response designed to protect an organism from potential tissue damage or harm from noxious heat. Vertebrates and invertebrates alike possess sensory neurons called nociceptors that detect noxious stimuli and relay the stimulus information to elicit an appropriate escape response. C. elegans is known to perform a reversal or forward response when presented with noxious stimuli at the head or tail, respectively. In this work, we develop a novel thermal stimulus assay with precise spatiotemporal control of an infrared pulse that targets small regions along the worm to spatially dissect the noxious response. We comprehensively quantify the nociceptive behavior, and identify key metrics that scale with intensity, such as speed in the escape state and the probability of certain behavioral states after the stimulus. Furthermore, we have mapped the behavioral receptive field of the worm along its body, and show a previously unreported probabilistic midbody behavior distinct from the head and tail responses. Surprisingly, the worm is able to differentiate localized stimuli at the midbody that are as close as 80 microns. We identified PVD as the thermal nociceptor for the midbody response using calcium imaging, genetic ablation and laser ablation. This suggests PVD could be used as a model to study spatial discrimination at the level of a single nociceptor. This spatial specificity further extends to pharmacological perturbations of the system. In particular, the application of clinically used painkillers to the worm results in a knockdown of this nociceptive response, but does so in a spatially specific manner. These results are promising for future studies building upon the techniques developed here, as they evidentiate the use of C. elegans as a model organism to study pain.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/43669
Date13 January 2014
CreatorsMohammadi, Aylia Shabnam
ContributorsRyu, William
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0018 seconds