Return to search

ENGINEERING THE CELLULAR NICHE VIA CAD/CAM LASER PROCESSING

archives@tulane.edu / We have developed a laser-biomaterial interaction-based prototyping platform capable of three fabrication modes: (1) laser direct write of cells, microbeads, and other biomaterials; (2) fabrication of cell encapsulating microspheres (microcapsules); and (3) laser micromachining of substrates. Using this system, we are able to precisely place biomaterials, such as cells, into substrates with spatial constraints from laser micromachining or wholly fabricate scaffolds that are cell laden. This enables fabrication of cocultures in almost any geometry and controlled gradients of chemical factors. In addition, the process is parallelizable, thus allowing for numerous potential bioassay applications. One such assay is a differential system for quantifying multiple outcomes in response to multiple parallel biophysicochemical cues in competition. These novel assays are complex, reproducible, and disposable microenvironments.
This document will summarize the control integration developed for Laser Direct Write, a 2D model of laser ablation, with a computational method demonstrating preliminary results. Finally the biofabrication methods discussed are applied to an Organ-on-a-Chip model to develop a fully automated fabrication process. / 1 / samuel sklare

  1. tulane:93919
Identiferoai:union.ndltd.org:TULANE/oai:http://digitallibrary.tulane.edu/:tulane_93919
Date January 2019
ContributorsSklare, Samuel (author), Chrisey, Douglas (Thesis advisor), School of Science & Engineering Mathematics (Degree granting institution), NULL Physics and Engineering Physics (Degree granting institution)
PublisherTulane University
Source SetsTulane University
LanguageEnglish
Detected LanguageEnglish
TypeText
Formatelectronic, pages:  228
Rights12 months, Copyright is in accordance with U.S. Copyright law.

Page generated in 0.0023 seconds