碩士 / 國立中山大學 / 海洋生物研究所 / 91 / Animal agonistic behaviors, including threat, combat, submission and chase, are complex responses to experimental stimuli. Animal behaviors are regulated by the central nervous system. In the central nervous system, the biogenic amine serotonin has been thought to serve important roles in animal aggression (including fish), but it’s not clear if serotonin affects threatening and fighting differently. This study took experimental approaches to examine the effects of this neurotransmitter on threatening and fighting in a paradise-fish model in which the complex agonistic behavior is well characterized. Treatments with serotonin synthesis precursor tryptophan (0.125mg/g) to one of the two contestants had insignificant effects on threatening or fighting while synthesis blocker p-Chlorophenylalanine (PCPA) (0.3mg/g) decreased threatening time and occurrences of head-tail display. When these drugs were added to both contestants, tryptophan reduced all agonistic behavioral patterns displays, and PCPA decreased threatening time and head-tail display. In addition to changes in behavioral patterns, tryptophan led the fish to be attacked. In contrast, PCPA led the injected fish to actively attack its opponent. However, tryptophan and PCPA had no effect on social status in parasise fish. I suggest that agonistic responses and the initial fighting decision in a paradise fish are affected not only by level of its serotonin, but also by the behavioral responses of its opponent. And the establishment of outcome of encounter is affected more by the environmental stimuli than the serotonin level.
Identifer | oai:union.ndltd.org:TW/091NSYS5270002 |
Date | January 2003 |
Creators | Kuo-Hsun Chiu, 邱國勛 |
Contributors | Hin-Kiu Mok, 莫顯蕎 |
Source Sets | National Digital Library of Theses and Dissertations in Taiwan |
Language | zh-TW |
Detected Language | English |
Type | 學位論文 ; thesis |
Format | 45 |
Page generated in 0.0163 seconds